cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249022 Decimal expansion of Sine Euler constant.

Original entry on oeis.org

4, 6, 6, 5, 9, 9, 3, 0, 6, 2, 0, 3, 7, 2, 9, 2, 6, 5, 2, 2, 1, 7, 3, 4, 2, 2, 0
Offset: 0

Views

Author

Clark Kimberling, Oct 22 2014

Keywords

Comments

The Sine Euler constant is introduced here as the limit as n increases without bound of sum{sin(1/k), k = 1..n} - integral{sin(1/x) over [1,n]}; this is analogous to the Euler constant, defined as the limit of sum{1/k, k = 1..n} - integral{1/x over [1,n]}.

Examples

			Sine Euler constant = 0.466599306203729265221734220...
		

Crossrefs

Cf. A001620 (Euler constant), A249023 (Tangent Euler constant).

Programs

  • Mathematica
    f = DifferenceRoot[Function[{\[FormalY], \[FormalN]}, {((2 \[FormalN] - z) (2 \[FormalN] - (z + 1))) \[FormalY][\[FormalN]] + \[FormalY][1 + \[FormalN]] == 0, \[FormalY][1] == -1}]];
    (Total[Table[1/((-1)^(n + 1) (2 n - 1)!) HarmonicNumber[k, 2 n - 1], {n, 50}]] /. k -> #) - (CosIntegral[1] - CosIntegral[1/#] - Sin[1] + # Sin[1/#]) &[N[10^35, 40]]
    RealDigits[t][[1]]
    (* Peter J. C. Moses, Oct 20 2014 *)