cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249026 Array read by antidiagonals upwards: T(d,n) = number of d-dimensional permutations of n letters (d >= 0, n >= 1).

This page as a plain text file.
%I A249026 #22 Oct 25 2014 11:17:28
%S A249026 1,1,2,1,2,3,1,2,6,4,1,2,12,24,5,1,2,24,576,120,6,1,2,48,55296,161280,
%T A249026 720,7,1,2,96,36972288,2781803520,812851200,5040,8,1,2,192,
%U A249026 6268637952000,52260618977280,994393803303936000,61479419904000,40320,9
%N A249026 Array read by antidiagonals upwards: T(d,n) = number of d-dimensional permutations of n letters (d >= 0, n >= 1).
%C A249026 By definition, this is the number of  nXnXnX...Xn = n^(d+1) arrays of 0's and 1's with exactly one 1 in each row, column, ..., line, ... .
%C A249026 An ordinary permutation is the case d = 1 (ordinary matrices with a single 1 in each row and column).
%C A249026 Rows d=2,3,... correspond to Latin squares, cubes, etc.
%H A249026 Linial, Nathan, and Zur Luria, <a href="http://arxiv.org/abs/1106.0649">An upper bound on the number of high-dimensional permutations</a>, arXiv preprint arXiv:1106.0649 [math.CO], (2011).
%H A249026 Linial, Nathan, and Zur Luria, <a href="http://dx.doi.org/10.1007/s00493-014-2842-8">An upper bound on the number of high-dimensional permutations</a>, Combinatorica, 34 (2014), 471-486.
%e A249026 The array begins:
%e A249026 d\n: 1, 2, 3,  4,  5,   6,   7,    8,     9,      10,      11,
%e A249026 --------------------------------------------------------------
%e A249026 0:   1, 2, 3,  4,  5,   6,   7,    8,     9,      10,      11,
%e A249026 1:   1, 2, 6,  24, 120, 720, 5040, 40320, 362880, 3628800, 39916800,  ...
%e A249026 2:   1, 2, 12, 576, 161280, 812851200, 61479419904000, 108776032459082956800,...
%e A249026 3:   1, 2, 24, 55296, 2781803520, 994393803303936000, ...
%e A249026 4:   1, 2, 48, 36972288, 52260618977280, ...
%e A249026 5:   1, 2, 96, 6268637952000, 2010196727432478720, ...
%e A249026 6:   1, 2, 192, ...
%e A249026 7:   1, 2, 384, ...
%e A249026 8:   1, 2, 768, ...
%e A249026 ...
%Y A249026 Rows: A000142, A002860, A098679, A100540, A132206.
%Y A249026 Column 4 = A249028.
%Y A249026 See A249027 for another version.
%K A249026 nonn,tabl
%O A249026 0,3
%A A249026 _N. J. A. Sloane_, Oct 23 2014