This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249042 #27 Nov 01 2018 13:38:22 %S A249042 1,1,1,2,1,3,4,1,6,6,1,6,7,7,24,18,1,14,36,24,1,10,11,25,70,46,15,100, %T A249042 180,96,1,30,150,240,120,1,15,16,65,165,101,90,455,690,326,31,360, %U A249042 1170,1440,600,1,62,540,1560,1800,720 %N A249042 Three-dimensional array of numbers N(r,p,m) read by triangular slices, each slice being read across rows: N(r,p,m) is the number of "r-panes in a (p,m) structure". %C A249042 Three-dimensional arrays don't really work in the OEIS, but this one seems like it should be included. See Good-Tideman for precise definition. %H A249042 I. J. Good, T. N. Tideman, <a href="http://dx.doi.org/10.1016/0097-3165(77)90077-2">Stirling numbers and a geometric structure from voting theory</a>, Journal of Combinatorial Theory, Series A Volume 23, Issue 1, July 1977, Pages 34-45. %H A249042 Warren D. Smith, <a href="http://rangevoting.org/WilsonOrder.html">D-dimensional orderings and Stirling numbers</a>, October 2014. %F A249042 There is a formula involving Stirling numbers. %e A249042 The initial triangular slices are: %e A249042 1 %e A249042 - %e A249042 1 %e A249042 1 2 %e A249042 --- %e A249042 1 %e A249042 3 4 %e A249042 1 6 6 %e A249042 ----- %e A249042 1 %e A249042 6 7 %e A249042 7 24 18 %e A249042 1 14 36 24 %e A249042 ---------- %e A249042 1 %e A249042 10 11 %e A249042 25 70 46 %e A249042 15 100 180 96 %e A249042 1 30 150 240 120 %e A249042 ---------------- %e A249042 1 %e A249042 15 16 %e A249042 65 165 101 %e A249042 90 455 690 326 %e A249042 31 360 1170 1440 600 %e A249042 1 62 540 1560 1800 720 %t A249042 S1[m_, n_] := Abs[StirlingS1[m, m - n]]; %t A249042 S2[m_, n_] := StirlingS2[m, m - n]; %t A249042 Nr[r_, p_, m_] := S2[m, p - r] Sum[S1[m - p + r, nu], {nu, 0, r}]; %t A249042 Table[Nr[r, p, m], {m, 1, 6}, {p, 0, m - 1}, {r, 0, p}] // Flatten (* _Jean-François Alcover_, Nov 01 2018 *) %Y A249042 The sequence of left edges of the triangles is A008278; the bases of the triangles give A019538; the hypotenuses give A181854. %K A249042 nonn,tabf,more %O A249042 1,4 %A A249042 _N. J. A. Sloane_, Oct 29 2014 %E A249042 More terms from _Michel Marcus_, Aug 28 2015