A249051 The smallest integer > 1 of exactly n consecutive integers divisible respectively by the first n natural numbers (A000027), or 0 if no such number exists.
2, 3, 7, 13, 0, 61, 421, 841, 0, 2521, 0, 27721, 0, 0, 360361, 720721, 0, 12252241, 0, 0, 0, 232792561, 0, 5354228881, 0, 26771144401, 0, 80313433201, 0, 2329089562801, 72201776446801, 0, 0, 0, 0, 144403552893601, 0, 0, 0, 5342931457063201, 0
Offset: 1
Keywords
Examples
a(3) = 7 because the smallest k such that 1|k, 2|k+1, 3|k+2, and 4 does not divide k+3 is 7. a(4) = 13 because the smallest k such that 1|k, 2|k+1, 3|k+2, 4|k+3, and 5 does not divide k+4 is 13.
Programs
-
Mathematica
f[n_] := Block[{lcm = LCM @@ Range@ n}, If[ lcm == LCM @@ Range[n + 1], 0, lcm + 1]]; Array[ f, 42] (* Robert G. Wilson v, Nov 13 2014 *)
Extensions
a(5) corrected (0, not 181) by Jon Perry, Nov 05 2014
Sequence corrected by Robert G. Wilson v, Nov 13 2014
Comments