cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249060 Column 1 of the triangular array at A249057.

This page as a plain text file.
%I A249060 #24 Dec 10 2022 10:46:45
%S A249060 1,4,5,24,35,192,315,1920,3465,23040,45045,322560,675675,5160960,
%T A249060 11486475,92897280,218243025,1857945600,4583103525,40874803200,
%U A249060 105411381075,980995276800,2635284526875,25505877196800,71152682225625,714164561510400,2063427784543125
%N A249060 Column 1 of the triangular array at A249057.
%H A249060 Clark Kimberling, <a href="/A249060/b249060.txt">Table of n, a(n) for n = 0..100</a>
%F A249060 From _Derek Orr_, Oct 21 2014: (Start)
%F A249060 a(2*n) = (2*n+3)*(2*n+1)!!/3, for n > 0.
%F A249060 a(2*n+1) = (n+2)!*2^(n+1), for n > 0.
%F A249060 For n > 2, if n is even, a(n)/[(n+1)*(n-1)*(n-3)*...*7*5] = n + 3 and if n is odd, a(n)/[(n+1)*(n-1)*(n-3)*...*6*4] = n + 3. (End)
%F A249060 a(n) = gcd_2((n+3)!,(n+3)!!), where gcd_2(b,c) denotes the second-largest common divisor of non-coprime integers b and c, as defined in A309491. - _Lechoslaw Ratajczak_, Apr 15 2021
%F A249060 D-finite with recurrence: a(n) - (3+n)*a(n-2) = 0. - _Georg Fischer_, Nov 25 2022
%F A249060 Sum_{n>=0} 1/a(n) = 3*sqrt(e*Pi/2)*erf(1/sqrt(2)) + 2*sqrt(e) - 6, where erf is the error function. - _Amiram Eldar_, Dec 10 2022
%e A249060 First 3 rows from A249057:
%e A249060 1
%e A249060 4    1
%e A249060 5    4    1,
%e A249060 so that a(0) = 1, a(1) = 4, a(2) = 5.
%t A249060 z = 30; p[x_, n_] := x + (n + 2)/p[x, n - 1]; p[x_, 1] = 1;
%t A249060 t = Table[Factor[p[x, n]], {n, 1, z}];
%t A249060 u = Numerator[t]; v1 = Flatten[CoefficientList[u, x]]; (* A249057 *)
%t A249060 v2 = u /. x -> 1  (* A249059 *)
%t A249060 v3 = u /. x -> 0  (* A249060 *)
%o A249060 (PARI) f(n) = if (n, x + (n + 3)/f(n-1), 1);
%o A249060 a(n) = polcoef(numerator(f(n)), 0); \\ _Michel Marcus_, Nov 25 2022
%Y A249060 Cf. A178647, A249057, A309491.
%K A249060 nonn,easy
%O A249060 0,2
%A A249060 _Clark Kimberling_, Oct 20 2014