This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249073 #7 Dec 19 2015 12:07:53 %S A249073 1,2,64,128,729,1458,4096,8192,15625,31250,46656,93312,117649,235298, %T A249073 262144,524288,531441,1000000,1062882,1771561,2000000,2985984,3543122, %U A249073 4826809,5971968,7529536,9653618,11390625,15059072,16777216,22781250,24137569,33554432 %N A249073 Ordered union of the sets {h^6, h >=1} and {2*k^6, k >=1}. %C A249073 Let S = {h^6, h >=1} and T = {2*k^6, k >=1}. Then S and T are disjoint. The position of n^6 in the ordered union of S and T is A249123(n), and the position of 2*n^6 is A249124(n). %H A249073 Clark Kimberling, <a href="/A249073/b249073.txt">Table of n, a(n) for n = 1..1000</a> %e A249073 {h^6, h >=1} = {1, 64, 729, 4096, 15625, 46656, 117649, ...}; %e A249073 {2*k^6, k >=1} = {2, 128, 1458, 8192, 31250, 93312, ...}; %e A249073 so the union is {1, 2, 64, 128, 729, 1458, 4096, 8192, 15625, ...}. %t A249073 z = 120; s = Table[h^6, {h, 1, z}]; t = Table[2 k^6, {k, 1, z}]; v = Union[s, t] %t A249073 Flatten[Table[{n^6,2n^6},{n,20}]]//Union (* _Harvey P. Dale_, Dec 19 2015 *) %Y A249073 Cf. A249096, A249123, A249124. %K A249073 nonn,easy %O A249073 1,2 %A A249073 _Clark Kimberling_, Oct 21 2014