This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249074 #13 Feb 27 2025 07:57:45 %S A249074 1,4,1,6,4,1,32,14,4,1,60,72,24,4,1,384,228,120,36,4,1,840,1392,564, %T A249074 176,50,4,1,6144,4488,3312,1140,240,66,4,1,15120,31200,14640,6480, %U A249074 2040,312,84,4,1,122880,104880,97440,37440,11280,3360,392,104,4,1,332640 %N A249074 Triangular array read by rows: row n gives the coefficients of the polynomial p(n,x) defined in Comments. %C A249074 The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + 2*(n+1)/f(n-1,x), where f(0,x) = 1. %C A249074 (Sum of numbers in row n) = A249075(n) for n >= 0. %C A249074 (n-th term of column 1) = A087299(n) for n >= 1. %H A249074 Clark Kimberling, <a href="/A249074/b249074.txt">Rows 0..100, flattened</a> %e A249074 f(0,x) = 1/1, so that p(0,x) = 1; %e A249074 f(1,x) = (4 + x)/1, so that p(1,x) = 4 + x; %e A249074 f(2,x) = (6 + 4*x + x^2)/(4 + x), so that p(2,x) = 6 + 4*x + x^2. %e A249074 First 6 rows of the triangle of coefficients: %e A249074 1 %e A249074 4 1 %e A249074 6 4 1 %e A249074 32 14 4 1 %e A249074 60 72 24 4 1 %e A249074 384 228 120 36 4 1 %t A249074 z = 11; p[x_, n_] := x + 2 n/p[x, n - 1]; p[x_, 1] = 1; %t A249074 t = Table[Factor[p[x, n]], {n, 1, z}] %t A249074 u = Numerator[t] %t A249074 TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249074 array *) %t A249074 Flatten[CoefficientList[u, x]] (* A249074 sequence *) %t A249074 v = u /. x -> 1 (* A249075 *) %t A249074 u /. x -> 0 (* A087299 *) %Y A249074 Cf. A249057, A249075, A087299. %K A249074 nonn,tabl,easy %O A249074 0,2 %A A249074 _Clark Kimberling_, Oct 20 2014