cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A249075 Sum of the numbers in row n of the array at A249074.

Original entry on oeis.org

1, 5, 11, 51, 161, 773, 3027, 15395, 69881, 377781, 1915163, 10981907, 60776145, 368269541, 2191553891, 13976179203, 88489011497, 591631462805, 3954213899691, 27619472411891, 193696456198913, 1408953242322117, 10318990227472115, 77948745858933731
Offset: 0

Views

Author

Clark Kimberling, Oct 20 2014

Keywords

Examples

			First 3 rows of A249074:
1
4    1
6    4    1
so that a(0) = 1, a(1) = 5, a(2) = 11.
		

Crossrefs

Cf. A249074.

Programs

  • Mathematica
    z = 11; p[x_, n_] := x + 2 n/p[x, n - 1]; p[x_, 1] = 1;
    t = Table[Factor[p[x, n]], {n, 1, z}]
    u = Numerator[t]
    TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249074 array *)
    Flatten[CoefficientList[u, x]] (* A249074 sequence  *)
    u /. x -> 1  (* A249075 *)
    RecurrenceTable[{a[n] == a[n-1] + 2*(n+1)*a[n-2], a[0] == 1, a[1] == 5}, a, {n, 0, 25}] (* Vaclav Kotesovec, Aug 10 2021 *)
    nmax = 25; CoefficientList[Series[1 + 2*x + Sqrt[Pi]*(3 + 4*x*(1 + x)) * E^((1/2 + x))^2 * (Erf[1/2 + x] - Erf[1/2])/2, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Aug 10 2021 *)

Formula

a(n) = a(n-1) + 2*(n+1)*a(n-2). - Vaclav Kotesovec, Aug 10 2021, following a suggestion from John M. Campbell
From Vaclav Kotesovec, Aug 10 2021: (Start)
E.g.f. A(x) satisfies the differential equation 6*A(x) + (2*x + 1)*A'(x) - A''(x) = 0, A(0) = 1, A'(0) = 5.
E.g.f.: 1 + 2*x + sqrt(Pi) * (3 + 4*x*(1 + x)) * exp((x + 1/2)^2) * (erf(x + 1/2) - erf(1/2))/2.
a(n) ~ sqrt(Pi) * erfc(1/2) * 2^((n-1)/2) * n^(n/2 + 1) * exp(1/8 + sqrt(n/2) - n/2). (End)
Showing 1-1 of 1 results.