This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249078 #18 Oct 29 2014 22:13:49 %S A249078 1,1,4,17,96,595,4516,37104,351020,3604001,41007240,502039444, %T A249078 6703536516,95376507135,1459072099824,23677731306350,408821193129564, %U A249078 7443839953433701,143258713990271960,2893053522512463984,61396438056305204020,1362146168353191078195,31605702195327725326560 %N A249078 E.g.f.: exp(1)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k - x^k). %C A249078 The function P(x) = Product_{n>=1} 1/(1 - x^n/n) equals the e.g.f. of A007841, the number of factorizations of permutations of n letters into cycles in nondecreasing length order. %H A249078 Paul D. Hanna, <a href="/A249078/b249078.txt">Table of n, a(n) for n = 0..100</a> %e A249078 E.g.f.: A(x) = 1 + x + 4*x^2/2! + 17*x^3/3! + 96*x^4/4! + 595*x^5/5! +... %e A249078 such that A(x) = exp(1)*P(x) - Q(x), where %e A249078 P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and %e A249078 Q(x) = Sum_{n>=1} 1/Product_{k=1..n} (k - x^k). %e A249078 More explicitly, %e A249078 P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...); %e A249078 Q(x) = 1/(1-x) + 1/((1-x)*(2-x^2)) + 1/((1-x)*(2-x^2)*(3-x^3)) + 1/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + 1/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +... %e A249078 We can illustrate the initial terms a(n) in the following manner. %e A249078 The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin: %e A249078 q(0) = 1.7182818284590452... %e A249078 q(1) = 1.7182818284590452... %e A249078 q(2) = 4.1548454853771357... %e A249078 q(3) = 12.901100113049497... %e A249078 q(4) = 56.223782393706533... %e A249078 q(5) = 285.72331242073065... %e A249078 q(6) = 1801.2869693388211... %e A249078 q(7) = 12727.542479311217... %e A249078 q(8) = 104411.81066734227... %e A249078 q(9) = 947120.40724315491... %e A249078 and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n) begin: %e A249078 A007841 = [1, 1, 3, 11, 56, 324, 2324, 18332, 167544, ...]; %e A249078 from which we can generate this sequence like so: %e A249078 a(0) = exp(1)*1 - q(0) = 1; %e A249078 a(1) = exp(1)*1 - q(1) = 1; %e A249078 a(2) = exp(1)*3 - q(2) = 4; %e A249078 a(3) = exp(1)*11 - q(3) = 17; %e A249078 a(4) = exp(1)*56 - q(4) = 96; %e A249078 a(5) = exp(1)*324 - q(5) = 595; %e A249078 a(6) = exp(1)*2324 - q(6) = 4516; %e A249078 a(7) = exp(1)*18332 - q(7) = 37104; %e A249078 a(8) = exp(1)*167544 - q(8) = 351020; ... %o A249078 (PARI) \p100 \\ set precision %o A249078 {P=Vec(serlaplace(prod(k=1,31,1/(1-x^k/k +O(x^31)))));} \\ A007841 %o A249078 {Q=Vec(serlaplace(sum(n=1,201,prod(k=1,n,1./(k-x^k +O(x^31))))));} %o A249078 for(n=0,30,print1(round(exp(1)*P[n+1]-Q[n+1]),", ")) %Y A249078 Cf. A007841, A249474, A249475, A249476, A249477, A249478, A249480. %K A249078 nonn %O A249078 0,3 %A A249078 _Paul D. Hanna_, Oct 28 2014