This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249079 #46 Feb 16 2025 08:33:24 %S A249079 0,29,58,87,116,145,174,203,232,261,290,319,348,377,406,436,465,494, %T A249079 523,552,581,610,639,668,697,726,755,784,813,842,871,900,929,958,987, %U A249079 1016,1045,1074,1103,1132,1161,1190,1219,1248,1278,1307,1336 %N A249079 a(n) = 29*n + floor( n/29 ) + 0^( 1-floor( (14+(n mod 29))/29 ) ). %C A249079 This is an approximation to A004942 (Nearest integer to n*phi^7, where phi is the golden ratio, A001622). %H A249079 Karl V. Keller, Jr., <a href="/A249079/b249079.txt">Table of n, a(n) for n = 0..1000</a> %H A249079 Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/">Fibonacci numbers</a> %H A249079 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GoldenRatio.html">Golden Ratio</a> %H A249079 Wikipedia, <a href="http://en.wikipedia.org/wiki/Golden_ratio">Golden ratio</a> %H A249079 <a href="/index/Rec#order_30">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1). %e A249079 n= 0, 29*n+floor(0.0) +0^(1-floor(0.48))= 0 +0 +0 = 0 (n/29=0,0^1=0). %e A249079 n=14, 29*n+floor(0.48)+0^(1-floor(0.97))= 406 +0 +0 = 406 (0^1=0). %e A249079 n=15, 29*n+floor(0.52)+0^(1-floor(1.0)) = 435 +0 +1 = 436 (0^0=1). %e A249079 n=28, 29*n+floor(0.97)+0^(1-floor(1.45))= 812 +0 +1 = 813 (0^0=1). %e A249079 n=29, 29*n+floor(1.0) +0^(1-floor(0.48))= 841 +1 +0 = 842 (n/29*1,0^1=0). %e A249079 n=43, 29*n+floor(1.48)+0^(1-floor(0.97))= 1247 +1 +0 = 1248 (0^1=0). %e A249079 n=44, 29*n+floor(1.52)+0^(1-floor(1.0)) = 1276 +1 +1 = 1278 (0^0=1). %e A249079 n=58, 29*n+floor(2.0) +0^(1-floor(0.48))= 1682 +2 +0 = 1684 (n/29*2,0^1=0). %e A249079 n=85, 29*n+floor(2.93)+0^(1-floor(1.41))= 2465 +2 +1 = 2468 (0^0=1). %e A249079 n=86, 29*n+floor(2.97)+0^(1-floor(1.45))= 2494 +2 +1 = 2497 (0^0=1). %e A249079 n=87, 29*n+floor(3.0) +0^(1-floor(0.48))= 2523 +3 +0 = 2526 (n/29*3,0^0=0). %o A249079 (Python) %o A249079 for n in range(101): %o A249079 print(29*n+n//29+0**(1-(14+n%29)//29), end=', ') %o A249079 (Python) %o A249079 def A249079(n): %o A249079 a, b = divmod(n,29) %o A249079 return 29*n+a+int(b>=15) # _Chai Wah Wu_, Jul 27 2022 %o A249079 (PARI) a(n) = 29*n + n\29 + 0^(1 - (14+(n % 29))\29); \\ _Michel Marcus_, Oct 25 2014 %o A249079 (Magma) [29*n + Floor(n/29) + 0^(1-Floor((14+(n mod 29))/29)) : n in [0..50]]; // _Vincenzo Librandi_, Nov 05 2014 %Y A249079 Cf. A001622 (phi), A195819 (29*n). %Y A249079 Cf. A004942 (round(n*phi^7)), A004922 (floor(n*phi^7)), A004962 (ceiling(n*phi^7)). %K A249079 nonn %O A249079 0,2 %A A249079 _Karl V. Keller, Jr._, Oct 20 2014