A249093 Length of self-iteration of the Kolakoski sequence A000002 starting at A000002(n): a(n) = max { k | A000002(n+i-1) = A000002(i), 0 < i <= k }.
0, 0, 1, 2, 0, 4, 0, 0, 7, 0, 0, 1, 2, 0, 1, 4, 0, 0, 2, 0, 1, 2, 0, 7, 0, 0, 1, 2, 0, 1, 2, 0, 4, 0, 0, 11, 0, 0, 1, 2, 0, 4, 0, 0, 2, 0, 1, 2, 0, 1, 4, 0, 0, 18, 0, 0, 1, 2, 0, 4, 0, 0, 7, 0, 0, 1, 2, 0, 1, 2, 0, 4, 0, 0, 2, 0, 1, 4, 0, 0, 28, 0, 0, 1, 2, 0, 4
Offset: 2
Keywords
Examples
A000002(n) = 2 => a(n) = 0 since the Kolakoski sequence begins with 1. a(7) = 4 since A000002(7:10) = A000002(1:4) and A000002(11) <> A000002(5).
Links
- Jean-Christophe Hervé, Table of n, a(n) for n = 2..99990
Comments