This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249095 #11 Dec 01 2014 02:51:58 %S A249095 1,1,1,1,1,1,2,1,1,1,1,3,2,3,1,1,1,1,4,3,6,3,4,1,1,1,1,5,4,10,6,10,4, %T A249095 5,1,1,1,1,6,5,15,10,20,10,15,5,6,1,1,1,1,7,6,21,15,35,20,35,15,21,6, %U A249095 7,1,1,1,1,8,7,28,21,56,35,70,35,56,21,28,7,8,1,1 %N A249095 Triangle read by rows: interleaving successive pairs of rows of Pascal's triangle. %C A249095 Length of row n = 2*n+1; %C A249095 T(n,2*k) = A007318(n,k), 0 <= k <= n; %C A249095 T(n,2*k+1) = A007318(n-1,k-1), n > 0 and 0 <= k < n; %C A249095 T(n,k) = T(n-1,k-2) + T(n-1,k), n > 0 and 2 <= k <= n-2; %C A249095 T(n,2*k) = T(n-1,2*k) + T(n-1,2*(k-1)), k = 0..n; %C A249095 T(n,2*k+1) = T(n-2,2*k), k = 0..n-1; %C A249095 T(n,n) = A128014(n); %C A249095 A105321(n) = number of odd terms in row n; %C A249095 A249304(n) = number of even terms in row n; %C A249095 T(n,k) mod 2 = A249133(n,k). %H A249095 Reinhard Zumkeller, <a href="/A249095/b249095.txt">Rows n = 0..125 of triangle, flattened</a> %H A249095 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %F A249095 T(n,2*k) = T(n,2*k-1) + T(n,2*k+1), 0 < k < n. %e A249095 The triangle begins: %e A249095 . 0: 1 %e A249095 . 1: 1 1 1 %e A249095 . 2: 1 1 2 1 1 %e A249095 . 3: 1 1 3 2 3 1 1 %e A249095 . 4: 1 1 4 3 6 3 4 1 1 %e A249095 . 5: 1 1 5 4 10 6 10 4 5 1 1 %e A249095 . 6: 1 1 6 5 15 10 20 10 15 5 6 1 1 %e A249095 . 7: 1 1 7 6 21 15 35 20 35 15 21 6 7 1 1 %e A249095 . 8: 1 1 8 7 28 21 56 35 70 35 56 21 28 7 8 1 1 %e A249095 . 9: 1 1 9 8 36 28 84 56 126 70 126 56 84 28 36 8 9 1 1 . %t A249095 t[n_, k_] := If[n > 1 && 1 < k < 2*n - 1, If[EvenQ[k], t[n - 1, k] + t[n - 1, k - 2], t[n - 1, k - 1]], 1]; Grid[Table[t[n, k], {n, 0, 9}, {k, 0, 2*n}]] (* _L. Edson Jeffery_, Nov 30 2014 *) %o A249095 (Haskell) %o A249095 import Data.List (transpose) %o A249095 a249095 n k = a249095_tabf !! n !! k %o A249095 a249095_row n = a249095_tabf !! n %o A249095 a249095_tabf = [1] : map (concat . transpose) %o A249095 (zipWith ((. return) . (:)) (tail a007318_tabl) a007318_tabl) %Y A249095 Cf. A005408 (row lengths), A128014 (central terms), A003945 (row sums), A249111 (partial sums per row), A007318 (Pascal). %Y A249095 Cf. A105321, A249304, A249307, A249133. %K A249095 nonn,tabf %O A249095 0,7 %A A249095 _Reinhard Zumkeller_, Nov 14 2014