This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249096 #6 Oct 30 2014 18:37:01 %S A249096 2,3,8,12,18,27,32,48,50,72,75,98,108,128,147,162,192,200,242,243,288, %T A249096 300,338,363,392,432,450,507,512,578,588,648,675,722,768,800,867,882, %U A249096 968,972,1058,1083,1152,1200,1250,1323,1352,1452,1458,1568,1587,1682 %N A249096 {2*h^2, h >=1} union {3*k^2, k >=1}, in increasing order. %C A249096 Let S = {2*h^2, h >=1} and T = {3*k^2, k >=1}. Then S and T are disjoint. The position of 2*n^2 in (S union T) is A184808(n), and the position of 3*n^2 is A184809(n). %H A249096 Clark Kimberling, <a href="/A249096/b249096.txt">Table of n, a(n) for n = 1..1000</a> %e A249096 {2*h^2, h >=1} = {2, 8, 18, 32, 50, 72, 98, 128, 162, 200, ...}; %e A249096 {3*k^2, k >=1} = {3, 12, 27, 48, 75, 108, 147, 192, 243, ...}; %e A249096 so the union is {2, 3, 8, 12, 18, 27, 32, 48, 50, 72, 75, ...} %t A249096 z = 120; s = Table[2 h^2, {h, 1, z}]; t = Table[3 k^2, {k, 1, z}]; v = Sort[Union[s, t]] %Y A249096 Cf. A184808, A184809. %Y A249096 A249367 is essentially the same sequence. %K A249096 nonn,easy %O A249096 1,1 %A A249096 _Clark Kimberling_, Oct 20 2014