This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249097 #20 Feb 18 2025 19:01:37 %S A249097 1,3,64,192,729,2187,4096,12288,15625,46656,46875,117649,139968, %T A249097 262144,352947,531441,786432,1000000,1594323,1771561,2985984,3000000, %U A249097 4826809,5314683,7529536,8957952,11390625,14480427,16777216,22588608,24137569,34012224,34171875 %N A249097 Ordered union of the sets {h^6, h >=1} and {3*k^6, k >=1}. %C A249097 Let S = {h^6, h >=1} and T = {3*k^6, k >=1}. Then S and T are disjoint. The position of n^6 in the ordered union of S and T is A249098(n), and the position of 3*n^6 is A249079(n). %H A249097 Clark Kimberling, <a href="/A249097/b249097.txt">Table of n, a(n) for n = 1..1000</a> %e A249097 {h^6, h >=1} = {1, 64, 729, 4096, 15625, 46656, 117649, ...}; %e A249097 {3*k^6, k >=1} = {3, 192, 2187, 12288, 46875, 139968, ...}; %e A249097 so the union is {1, 3, 64, 192, 729, 2187, 4096, 12288, ...} %o A249097 (PARI) upto(n)=setunion(apply(k->k^6, [1..sqrtnint(n,6)]), apply(k->3*k^6, [1..sqrtnint(n\3,6)])) \\ _Andrew Howroyd_, Feb 18 2025 %Y A249097 Cf. A001014, A249098, A249099, A249073. %K A249097 nonn,easy %O A249097 1,2 %A A249097 _Clark Kimberling_, Oct 21 2014