A249098 Position of n^6 in the ordered union of {h^6, h >=1} and {3*k^6, k >=1}.
1, 3, 5, 7, 9, 10, 12, 14, 16, 18, 20, 21, 23, 25, 27, 29, 31, 32, 34, 36, 38, 40, 42, 43, 45, 47, 49, 51, 53, 54, 56, 58, 60, 62, 64, 65, 67, 69, 71, 73, 75, 76, 78, 80, 82, 84, 86, 87, 89, 91, 93, 95, 97, 98, 100, 102, 104, 106, 108, 109, 111, 113, 115
Offset: 1
Examples
{h^6, h >=1} = {1, 64, 729, 4096, 15625, 46656, 117649, ...}; {3*k^6, k >=1} = {3, 192, 2187, 12288, 46875, 139968, ...}; so the ordered union is {1, 3, 64, 192, 729, 2187, 4096, 12288, ...}, and a(2) = 3 because 2^6 is in position 3.
Links
Programs
-
Mathematica
z = 200; s = Table[h^6, {h, 1, z}]; t = Table[3*k^6, {k, 1, z}]; u = Union[s, t]; v = Sort[u] (* A249097 *) m = Min[120, Position[v, 2*z^2]] Flatten[Table[Flatten[Position[v, s[[n]]]], {n, 1, m}]] (* A249098 *) Flatten[Table[Flatten[Position[v, t[[n]]]], {n, 1, m}]] (* A249099 *)
-
PARI
a(n) = sqrtnint(n^6\3,6) + n; \\ Kevin Ryde, Feb 19 2025
Formula
a(n) = floor((1+1/3^(1/6)) * n). - Kevin Ryde, Feb 19 2025
Comments