A249099 Position of 3*n^6 in the ordered union of {h^6, h >=1} and {3*k^6, k >=1}.
2, 4, 6, 8, 11, 13, 15, 17, 19, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 44, 46, 48, 50, 52, 55, 57, 59, 61, 63, 66, 68, 70, 72, 74, 77, 79, 81, 83, 85, 88, 90, 92, 94, 96, 99, 101, 103, 105, 107, 110, 112, 114, 116, 118, 121, 123, 125, 127, 129, 132, 134
Offset: 1
Examples
{h^6, h >=1} = {1, 64, 729, 4096, 15625, 46656, 117649, ...}; {3*k^6, k >=1} = {3, 192, 2187, 12288, 46875, 139968, ...}; so the ordered union is {1, 3, 64, 192, 729, 2187, 4096, 12288, ...}, and a(2) = 4 because 3*2^6 is in position 4.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
z = 200; s = Table[h^6, {h, 1, z}]; t = Table[3*k^6, {k, 1, z}]; u = Union[s, t]; v = Sort[u] (* A249073 *) m = Min[120, Position[v, 2*z^2]] Flatten[Table[Flatten[Position[v, s[[n]]]], {n, 1, m}]] (* A249098 *) Flatten[Table[Flatten[Position[v, t[[n]]]], {n, 1, m}]] (* A249099 *)
-
PARI
a(n) = sqrtnint(3*n^6,6) + n; \\ Kevin Ryde, Feb 18 2025
Formula
a(n) = floor((1+3^(1/6)) * n). - Kevin Ryde, Feb 18 2025
Extensions
Incorrect conjectured formulas removed by Kevin Ryde, Feb 18 2025
Comments