This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249100 #19 Feb 28 2025 07:45:32 %S A249100 1,3,1,5,3,1,21,12,3,1,45,48,21,3,1,231,177,81,32,3,1,585,855,450,120, %T A249100 45,3,1,3465,3240,2070,930,165,60,3,1,9945,18000,10890,4110,1695,216, %U A249100 77,3,1,65835,71505,57330,28560,7245,2835,273,96,3,1,208845,443835,300195,143640,64155,11781,4452,336,117,3,1 %N A249100 Triangular array read by rows: row n gives the coefficients of the polynomial p(n,x) defined in Comments. %C A249100 The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + (2*n+1)/f(n-1,x), where f(0,x) = 1. %C A249100 (Sum of numbers in row n) = A249101(n) for n >= 0. %C A249100 (n-th term of column 1) = A235136(n) for n >= 1. %H A249100 Clark Kimberling, <a href="/A249100/b249100.txt">Rows 0..100, flattened</a> %F A249100 T(n, k) = T(n-1, k-1) + (2*n-1)*T(n-2, k). - _Michael Somos_, Oct 27 2022 %e A249100 f(0,x) = 1/1, so that p(0,x) = 1; %e A249100 f(1,x) = (3 + x)/1, so that p(1,x) = 3 + x; %e A249100 f(2,x) = (5 + 3*x + x^2)/(3 + x), so that p(2,x) = 5 + 3*x + x^2. %e A249100 First 6 rows of the triangle of coefficients: %e A249100 1; %e A249100 3, 1; %e A249100 5, 3, 1; %e A249100 21, 12, 3, 1; %e A249100 45, 48, 21, 3, 1; %e A249100 231, 177, 81, 32, 3, 1; %t A249100 z = 11; p[x_, n_] := x + (2 n - 1)/p[x, n - 1]; p[x_, 1] = 1; %t A249100 t = Table[Factor[p[x, n]], {n, 1, z}] %t A249100 u = Numerator[t] %t A249100 TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249100 array *) %t A249100 Flatten[CoefficientList[u, x]] (* A249100 sequence *) %t A249100 v = u /. x -> 1 (* A249101 *) %t A249100 u /. x -> 0 (* A235136 *) %t A249100 T[ n_Integer, k_Integer] := (T[n, k] = If[n<2, Boole[0==k], T[n-1, k-1] + (2*n-1)*T[n-2 ,k] ]); Join @@ Table[T[n, k], {n, 10}, {k, 0, n-1}] (* _Michael Somos_, Oct 27 2022 *) %Y A249100 Cf. A249101, A245136, A087299. %K A249100 nonn,tabl,easy %O A249100 0,2 %A A249100 _Clark Kimberling_, Oct 21 2014