cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249109 Composite numbers whose sum of aliquot parts divides the sum of the aliquot parts of the numbers less than or equal to n and not relatively prime to n.

This page as a plain text file.
%I A249109 #18 Nov 14 2014 12:00:07
%S A249109 15,26,27,38,76,194,531,1445,1501,2923,2988,4427,4499,4769,5817,7831,
%T A249109 9523,10602,12412,14963,16117,24863,26768,29041,29329,30229,36577,
%U A249109 45246,49817,58483,58823,71165,75469,76273,79799,83429,86941,94037
%N A249109 Composite numbers whose sum of aliquot parts divides the sum of the aliquot parts of the numbers less than or equal to n and not relatively prime to n.
%H A249109 Ray Chandler, <a href="/A249109/b249109.txt">Table of n, a(n) for n = 1..64</a>
%e A249109 Numbers not coprime to 15 are 3, 5, 6, 9, 10, 12, 15. Then, sigma(3) - 3 = 1, sigma(5) - 5 = 1, sigma(6) - 6 = 6, sigma(9) - 9 = 4, sigma(10) - 10 = 8, sigma(12) - 12 = 16, sigma(15) - 15 = 9; their sum is 1 + 1 + 6 + 4 + 8 + 16 + 9 = 45 and 45 / 9 = 5.
%p A249109 with(numtheory): P:=proc(q) local a,k,n; for n from 2 to q do
%p A249109 if not isprime(n) then a:=0;
%p A249109 for k from 1 to n do if gcd(k,n)>1 then a:=a+sigma(k)-k; fi; od;
%p A249109 if type(a/(sigma(n)-n),integer) then print(n); fi; fi; od; end: P(10^9);
%o A249109 (PARI) lista(nn) = {forcomposite(n=1, nn, if (sum(k=1, n, if (gcd(k,n) !=1, sigma(k)-k)) % (sigma(n) - n) == 0, print1(n, ", ")););} \\ _Michel Marcus_, Nov 09 2014
%Y A249109 Cf. A001065, A249108, A249396, A249397.
%K A249109 nonn
%O A249109 1,1
%A A249109 _Paolo P. Lava_, Oct 21 2014
%E A249109 a(22)-a(38) from _Michel Marcus_, Nov 09 2014