This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249120 #33 Nov 11 2024 22:23:57 %S A249120 1,4,13,5,35,20,86,65,194,175,14,415,430,56,844,970,182,1654,2075,490, %T A249120 3133,4220,1204,30,5773,8270,2716,120,10372,15665,5810,390,18240, %U A249120 28865,11816,1050,31449,51860,23156,2580,53292,91200,43862,5820,55,88873,157245,80822,12450,220,146095,266460,145208,25320,715 %N A249120 Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the numbers of A210843 multiplied by A000330(k), and the first element of column k is in row A000217(k). %C A249120 Conjecture: gives an identity for the sum of all divisors of all positive integers <= n. Alternating sum of row n equals A024916(n), i.e., Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = A024916(n). %C A249120 Row n has length A003056(n) hence the first element of column k is in row A000217(k). %C A249120 Column 1 is A210843. %C A249120 Column k lists the partial sums of the k-th column of triangle A252117 which gives an identity for sigma. %C A249120 The first element of column k is A000330(k). %C A249120 The second element of column k is A002492(k). %e A249120 Triangle begins: %e A249120 1; %e A249120 4; %e A249120 13, 5; %e A249120 35, 20; %e A249120 86, 65; %e A249120 194, 175, 14; %e A249120 415, 430, 56; %e A249120 844, 970, 182; %e A249120 1654, 2075, 490; %e A249120 3133, 4220, 1204, 30; %e A249120 5773, 8270, 2716, 120; %e A249120 10372, 15665, 5810, 390; %e A249120 18240, 28865, 11816, 1050; %e A249120 31449, 51860, 23156, 2580; %e A249120 53292, 91200, 43862, 5820, 55; %e A249120 88873, 157245, 80822, 12450, 220; %e A249120 146095, 266460, 145208, 25320, 715; %e A249120 236977, 444365, 255360, 49620, 1925; %e A249120 379746, 730475, 440286, 93990, 4730; %e A249120 601656, 1184885, 746088, 173190, 10670; %e A249120 943305, 1898730, 1244222, 311160, 22825, 91; %e A249120 ... %e A249120 For n = 6 the sum of all divisors of all positive integers <= 6 is [1] + [1+2] + [1+3] + [1+2+4] + [1+5] + [1+2+3+6] = 1 + 3 + 4 + 7 + 6 + 12 = 33. On the other hand the 6th row of triangle is 194, 175, 14, so the alternating row sum is 194 - 175 + 14 = 33, equaling the sum of all divisors of all positive integers <= 6. %Y A249120 Cf. A000203, A000217, A000330, A002492, A003056, A024916, A195825, A196020, A210843, A211970, A236104, A252117. %K A249120 nonn,tabf %O A249120 1,2 %A A249120 _Omar E. Pol_, Dec 14 2014