This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249130 #17 Feb 28 2025 07:45:23 %S A249130 1,2,1,2,2,1,8,6,2,1,8,16,10,2,1,48,44,28,16,2,1,48,144,104,40,22,2,1, %T A249130 384,400,368,232,56,30,2,1,384,1536,1232,688,408,72,38,2,1,3840,4384, %U A249130 5216,3552,1248,708,92,48,2,1,3840,19200,16704,12096,7632,1968,1088,112,58,2,1 %N A249130 Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments. %C A249130 The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + 2*floor((n+1)/2)/f(n-1,x), where f(0,x) = 1. %C A249130 (Sum of numbers in row n) = A249131(n) for n >= 0. %C A249130 (Column 1) = A037223. %H A249130 Clark Kimberling, <a href="/A249130/b249130.txt">Rows 0..100, flattened</a> %e A249130 f(0,x) = 1/1, so that p(0,x) = 1; %e A249130 f(1,x) = (2 + x)/1, so that p(1,x) = 2 + x; %e A249130 f(2,x) = (2 + 2*x + x^2)/(3 + x), so that p(2,x) = 2 + 2*x + x^2. %e A249130 First 6 rows of the triangle of coefficients: %e A249130 1 %e A249130 2 1 %e A249130 2 2 1 %e A249130 8 6 2 1 %e A249130 8 16 10 2 1 %e A249130 48 44 28 16 2 1 %t A249130 z = 15; p[x_, n_] := x + 2 Floor[n/2]/p[x, n - 1]; p[x_, 1] = 1; %t A249130 t = Table[Factor[p[x, n]], {n, 1, z}] %t A249130 u = Numerator[t] %t A249130 TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249130 array *) %t A249130 Flatten[CoefficientList[u, x]] (* A249130 sequence *) %Y A249130 Cf. A249131, A037223, A249128. %K A249130 nonn,tabl,easy %O A249130 0,2 %A A249130 _Clark Kimberling_, Oct 22 2014