cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A249131 p(1,n), where the polynomial p(n,x) is defined in Comments; sum of the numbers in row n of the triangular array at A249130.

Original entry on oeis.org

1, 3, 5, 17, 37, 139, 361, 1473, 4361, 19091, 62701, 291793, 1044205, 5129307, 19748177, 101817089, 417787921, 2250495523, 9770678101, 54780588561, 250194150581, 1455367098923, 6959638411705, 41888448785857, 208919770666777, 1298019439099059
Offset: 0

Views

Author

Clark Kimberling, Oct 22 2014

Keywords

Comments

The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + 2*floor((n+1)/2)/f(n-1,x), where f(0,x) = 1.

Examples

			The first 3 rows of the array at A249130:
  1
  2    1
  2    2    1,
so that the first 3 terms of A249131 are 1,3,5.
		

Crossrefs

Cf. A249130.

Programs

  • Mathematica
    z = 15; p[x_, n_] := x + 2 Floor[n/2]/p[x, n - 1]; p[x_, 1] = 1;
    t = Table[Factor[p[x, n]], {n, 1, z}]
    u = Numerator[t]
    TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249130 array *)
    u /. x -> 1  (* A249131 *)

A249128 Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 6, 11, 7, 8, 1, 1, 6, 18, 26, 10, 11, 1, 1, 24, 50, 46, 58, 14, 15, 1, 1, 24, 96, 154, 86, 102, 18, 19, 1, 1, 120, 274, 326, 444, 156, 177, 23, 24, 1, 1, 120, 600, 1044, 756, 954, 246, 272, 28, 29, 1, 1, 720, 1764, 2556, 3708, 1692, 2016, 384, 416, 34, 35, 1, 1
Offset: 0

Views

Author

Clark Kimberling, Oct 22 2014

Keywords

Comments

The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + floor((n+1)/2)/f(n-1,x), where f(0,x) = 1.
(Sum of numbers in row n) = A056953(n) for n >= 0.
Column 1 consists of repeated factorials (A000142), as in A081123.

Examples

			f(0,x) = 1/1, so that p(0,x) = 1;
f(1,x) = (1 + x)/1, so that p(1,x) = 1 + x;
f(2,x) = (1 + x + x^2)/(1 + x), so that p(2,x) = 1 + x + x^2.
First 6 rows of the triangle of coefficients:
  1
  1    1
  1    1    1
  2    3    1    1
  2    4    5    1    1
  6    11   7    8    1    1
		

Crossrefs

Programs

  • Mathematica
    z = 15; p[x_, n_] := x + Floor[n/2]/p[x, n - 1]; p[x_, 1] = 1;
    t = Table[Factor[p[x, n]], {n, 1, z}]
    u = Numerator[t]
    TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249128 array *)
    Flatten[CoefficientList[u, x]] (* A249128 sequence *)
Showing 1-2 of 2 results.