cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249132 Smallest noncomposite k such that prime(n) is the largest prime factor of k^2+1, or 0 if no such k exists.

Original entry on oeis.org

1, 0, 2, 0, 0, 5, 13, 0, 0, 17, 0, 31, 73, 0, 0, 23, 0, 11, 0, 0, 173, 0, 0, 233, 463, 293, 0, 0, 251, 919, 0, 0, 37, 0, 193, 0, 443, 0, 0, 599, 0, 19, 0, 467, 211, 0, 0, 0, 0, 107, 89, 0, 659, 0, 241, 0, 2503, 0, 337, 53, 0, 3671, 0, 0
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 22 2014

Keywords

Comments

a(A080148(m)) = 0. - Joerg Arndt, Oct 22 2014

Examples

			a(1)=1 is in this sequence because 1 is in A008578 and the largest prime factor of 1^2+1 = 2 is prime(1).
		

Crossrefs

Programs

  • Maple
    A249132:= proc(n) local p,i,k,a,b;
       p:= ithprime(n);
       if p mod 4 = 3 then return 0 fi;
       a:= numtheory:-msqrt(-1,p);
       if a < p/2 then b:= p-a
       else b:= a; a:= p-a
       fi;
       for i from 0 do
        for k in [a+i*p,b+i*p] do
          if isprime(k) and p = max(numtheory:-factorset(k^2+1)) then
            return(k)
          fi
        od
       od
    end proc:
    1,seq(A249132(n),n=2..100); # Robert Israel, Nov 10 2014
  • Mathematica
    a249132[n_Integer] := Module[{t = Table[0, {n}], k, s, p}, Do[If[Mod[Prime[k], 4] == 3, t[[k]] = -1], {k, n}]; k = 0; While[Times @@ t == 0, k++; s = FactorInteger[k^2 + 1][[-1, 1]]; p = PrimePi[s]; If[p <= n && t[[p]] == 0 && ! CompositeQ[k], t[[p]] = k]]; t /. -1 -> 0]; a249132[120] (* Michael De Vlieger, Nov 11 2014, adapted from A223702 *)