cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249137 Decimal expansion of the derivative y'(0) where y(x) is the solution to the differential equation y''(x)+exp(y(x))=0, with y(0)=y(beta)=0 and beta maximum (beta = A249136).

This page as a plain text file.
%I A249137 #16 Feb 16 2025 08:33:24
%S A249137 2,1,3,3,8,7,7,9,3,9,9,1,5,0,6,1,1,1,9,8,0,7,2,4,4,6,7,7,4,0,1,8,5,2,
%T A249137 9,1,9,2,2,8,9,6,2,3,8,5,3,7,9,6,4,6,8,6,1,7,7,7,2,3,4,5,9,2,7,1,9,0,
%U A249137 6,1,1,7,5,5,7,7,4,9,9,0,3,8,1,5,7,5,2,3,9,9,3,3,7,4,7,3,2,9,4,3,3,5,6
%N A249137 Decimal expansion of the derivative y'(0) where y(x) is the solution to the differential equation y''(x)+exp(y(x))=0, with y(0)=y(beta)=0 and beta maximum (beta = A249136).
%H A249137 G. C. Greubel, <a href="/A249137/b249137.txt">Table of n, a(n) for n = 1..10000</a>
%H A249137 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, p. 32.
%H A249137 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/LaplaceLimit.html">Laplace Limit.</a>
%F A249137 y'(0) = sqrt(2)*sinh(sqrt(lambda^2 + 1)), where lambda is A033259, the Laplace limit constant 0.66274...
%e A249137 2.13387793991506111980724467740185291922896238537964686...
%t A249137 digits = 103; lambda = x /. FindRoot[x*Exp[Sqrt[1 + x^2]]/(1 + Sqrt[1 + x^2]) == 1, {x, 1}, WorkingPrecision -> digits+5]; mu = Sqrt[lambda^2 + 1]; RealDigits[Sqrt[2]*Sinh[mu], 10, digits] // First
%Y A249137 Cf. A033259, A085984, A248916, A249136.
%K A249137 nonn,cons,easy
%O A249137 1,1
%A A249137 _Jean-François Alcover_, Oct 22 2014