This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249151 #38 Aug 24 2025 11:29:43 %S A249151 1,1,2,1,4,2,6,1,2,4,10,7,12,6,4,1,16,2,18,4,6,10,22,11,4,12,2,6,28, %T A249151 25,30,1,10,16,6,36,36,18,12,40,40,6,42,10,23,22,46,19,6,4,16,12,52,2, %U A249151 10,35,18,28,58,47,60,30,63,1,12,10,66,16,22,49,70,41,72,36,4,18,10,12,78,80,2 %N A249151 Largest m such that m! divides the product of elements on row n of Pascal's triangle: a(n) = A055881(A001142(n)). %C A249151 A000225 gives the positions of ones. %C A249151 A006093 seems to give all such k, that a(k) = k. %H A249151 Chai Wah Wu, <a href="/A249151/b249151.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..4096 from Antti Karttunen) %F A249151 a(n) = A055881(A001142(n)). %e A249151 Binomial coeff. Their product Largest k! %e A249151 A007318 A001142(n) which divides %e A249151 Row 0 1 1 1! %e A249151 Row 1 1 1 1 1! %e A249151 Row 2 1 2 1 2 2! %e A249151 Row 3 1 3 3 1 9 1! %e A249151 Row 4 1 4 6 4 1 96 4! (96 = 4*24) %e A249151 Row 5 1 5 10 10 5 1 2500 2! (2500 = 1250*2) %e A249151 Row 6 1 6 15 20 15 6 1 162000 6! (162000 = 225*720) %o A249151 (PARI) %o A249151 A249151(n) = { my(uplim,padicvals,b); uplim = (n+3); padicvals = vector(uplim); for(k=0, n, b = binomial(n, k); for(i=1, uplim, padicvals[i] += valuation(b, prime(i)))); k = 1; while(k>0, for(i=1, uplim, if((padicvals[i] -= valuation(k, prime(i))) < 0, return(k-1))); k++); }; %o A249151 \\ Alternative implementation: %o A249151 A001142(n) = prod(k=1, n, k^((k+k)-1-n)); %o A249151 A055881(n) = { my(i); i=2; while((0 == (n%i)), n = n/i; i++); return(i-1); } %o A249151 A249151(n) = A055881(A001142(n)); %o A249151 for(n=0, 4096, write("b249151.txt", n, " ", A249151(n))); %o A249151 (Scheme) (define (A249151 n) (A055881 (A001142 n))) %o A249151 (Python) %o A249151 from itertools import count %o A249151 from collections import Counter %o A249151 from math import comb %o A249151 from sympy import factorint %o A249151 def A249151(n): %o A249151 p = sum((Counter(factorint(comb(n,i))) for i in range(n+1)),start=Counter()) %o A249151 for m in count(1): %o A249151 f = Counter(factorint(m)) %o A249151 if not f<=p: %o A249151 return m-1 %o A249151 p -= f # _Chai Wah Wu_, Aug 19 2025 %Y A249151 One more than A249150. %Y A249151 Cf. A249423 (numbers k such that a(k) = k+1). %Y A249151 Cf. A249429 (numbers k such that a(k) > k). %Y A249151 Cf. A249433 (numbers k such that a(k) < k). %Y A249151 Cf. A249434 (numbers k such that a(k) >= k). %Y A249151 Cf. A249424 (numbers k such that a(k) = (k-1)/2). %Y A249151 Cf. A249428 (and the corresponding values, i.e. numbers n such that A249151(2n+1) = n). %Y A249151 Cf. A249425 (record positions). %Y A249151 Cf. A249427 (record values). %Y A249151 Cf. A001142, A006093, A000225, A007917, A055881, A187059, A249346, A249421, A249430, A249431, A249432. %K A249151 nonn,changed %O A249151 0,3 %A A249151 _Antti Karttunen_, Oct 25 2014