This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249155 #21 Sep 23 2024 14:19:23 %S A249155 0,1,2,3,4,5,7,14,80,160,301,602,693,994,1295,1627,1777,2365,2666, %T A249155 5296,5776,6256,17360,34720,51301,52201,105092,155493,209284,587846, %U A249155 735644,7904800,11495701,80005507,80469907,83165017,89731777,90196177 %N A249155 Palindromic in bases 6 and 15. %C A249155 Intersection of A029953 and A029960. %H A249155 Ray Chandler and Chai Wah Wu, <a href="/A249155/b249155.txt">Table of n, a(n) for n = 1..71</a> (terms < 6^28). First 65 terms from Ray Chandler. %H A249155 Attila Bérczes and Volker Ziegler, <a href="http://arxiv.org/abs/1403.0787">On Simultaneous Palindromes</a>, arXiv:1403.0787 [math.NT], 2014. %e A249155 301 is a term since 301 = 1221 base 6 and 301 = 151 base 15. %t A249155 palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; Select[Range[10^6] - 1, palQ[#, 6] && palQ[#, 15] &] %o A249155 (Python) %o A249155 from gmpy2 import digits %o A249155 def palQ(n, b): # check if n is a palindrome in base b %o A249155 s = digits(n, b) %o A249155 return s == s[::-1] %o A249155 def palQgen(l, b): # generator of palindromes in base b of length <= 2*l %o A249155 if l > 0: %o A249155 yield 0 %o A249155 for x in range(1, l+1): %o A249155 for y in range(b**(x-1), b**x): %o A249155 s = digits(y, b) %o A249155 yield int(s+s[-2::-1], b) %o A249155 for y in range(b**(x-1), b**x): %o A249155 s = digits(y, b) %o A249155 yield int(s+s[::-1], b) %o A249155 A249155_list = [n for n in palQgen(8, 6) if palQ(n, 15)] # _Chai Wah Wu_, Nov 29 2014 %Y A249155 Cf. A007632, A060792, A249156, A249157, A249158. %K A249155 nonn,base %O A249155 1,3 %A A249155 _Ray Chandler_, Oct 27 2014