This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249157 #22 May 15 2025 10:38:32 %S A249157 0,1,2,3,4,5,6,7,8,9,10,12,84,366,510,732,876,1020,1098,1242,1464, %T A249157 10248,30252,31110,62220,103704,146541,3382050,3698730,4391268, %U A249157 225622530,272466250,413186676,713998530,801837204,848770222,912265732 %N A249157 Palindromic in bases 11 and 13. %C A249157 Intersection of A029956 and A029958. %H A249157 Ray Chandler, <a href="/A249157/b249157.txt">Table of n, a(n) for n = 1..69</a> (terms < 10^18) %H A249157 Attila Bérczes and Volker Ziegler, <a href="http://arxiv.org/abs/1403.0787">On Simultaneous Palindromes</a>, arXiv:1403.0787 [math.NT], 2014. %e A249157 366 is a term since 366 = 303 base 11 and 366 = 222 base 13. %t A249157 palQ[n_Integer,base_Integer]:=Block[{idn=IntegerDigits[n,base]},idn==Reverse[idn]];Select[Range[10^6]-1,palQ[#,11]&&palQ[#,13]&] %t A249157 Select[Range[0,44*10^5],AllTrue[IntegerDigits[#,{11,13}],PalindromeQ]&] (* The program generates the first 30 terms of the sequence. *) (* _Harvey P. Dale_, May 15 2025 *) %o A249157 (Python) %o A249157 from gmpy2 import digits %o A249157 def palQ(n, b): # check if n is a palindrome in base b %o A249157 s = digits(n, b) %o A249157 return s == s[::-1] %o A249157 def palQgen(l, b): # unordered generator of palindromes in base b of length <= 2*l %o A249157 if l > 0: %o A249157 yield 0 %o A249157 for x in range(1, b**l): %o A249157 s = digits(x, b) %o A249157 yield int(s+s[-2::-1], b) %o A249157 yield int(s+s[::-1], b) %o A249157 A249157_list = sorted([n for n in palQgen(6,11) if palQ(n,13)]) # _Chai Wah Wu_, Nov 25 2014 %Y A249157 Cf. A007632, A060792, A249155, A249156, A249158. %K A249157 nonn,base %O A249157 1,3 %A A249157 _Ray Chandler_, Oct 27 2014