This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249179 #26 Dec 14 2014 02:50:00 %S A249179 1,3,4,9,12,29,41,94,135,306,441,997,1437,3251,4688,10602,15290,34574, %T A249179 49864,112751,162615,367699,530313,1199127,1729440,3910553,5639993, %U A249179 12752965 %N A249179 First row of spectral array W(3^(1/3)). %C A249179 3^(1/3) = 1.442249570307408382321638310780109588391869253499350577546416... %C A249179 The sequence is generated from the Beatty sequence (A059539) and from the complement of the Beatty sequence (A059540) for 3^(1/3). %H A249179 A. Fraenkel and C. Kimberling, <a href="http://dx.doi.org/10.1016/0012-365X(94)90259-3">Generalized Wythoff arrays, shuffles and interspersions</a>, Discrete Mathematics 126 (1994) 137-149. %o A249179 (PARI) %o A249179 \\ Row i of the generalized Wythoff array W(h), %o A249179 \\ where h is an irrational number between 1 and 2, %o A249179 \\ and m is the number of terms in the vectors b and c. %o A249179 row(h, i, m) = { %o A249179 if(h<=1 || h>=2, print("Invalid value for h"); return); %o A249179 my( %o A249179 b=vector(m, n, floor(n*h)), \\ Beatty sequence for h %o A249179 c=vector(m, n, floor(n*h/(h-1))), \\ Complement of b %o A249179 w=[b[b[i]], c[b[i]]], %o A249179 j=3 %o A249179 ); %o A249179 while(1, %o A249179 if(j%2==1, %o A249179 if(w[j-1]<=#b, w=concat(w, b[w[j-1]]), return(w)) %o A249179 , %o A249179 if(w[j-2]<=#c, w=concat(w, c[w[j-2]]), return(w)) %o A249179 ); %o A249179 j++ %o A249179 ) %o A249179 } %o A249179 allocatemem(10^9) %o A249179 default(realprecision, 100) %o A249179 row(3^(1/3), 1, 10^7) %Y A249179 Cf. A059539, A059540. %K A249179 nonn,more %O A249179 1,2 %A A249179 _Colin Barker_, Dec 03 2014