cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249183 a(n) = row n of triangle A249133, concatenated.

This page as a plain text file.
%I A249183 #11 Jul 28 2023 10:36:57
%S A249183 1,111,11011,1110111,110101011,11100000111,1101100011011,
%T A249183 111011101110111,11010101010101011,1110000000000000111,
%U A249183 110110000000000011011,11101110000000001110111,1101010110000000110101011,111000001110000011100000111,11011000110110001101100011011
%N A249183 a(n) = row n of triangle A249133, concatenated.
%H A249183 Reinhard Zumkeller, <a href="/A249183/b249183.txt">Table of n, a(n) for n = 0..500</a>
%F A249183 a(n) = Sum_{k=0..2*n} A249133(n,k)*10^k.
%F A249183 a(n) = A007088(A249184(n));
%F A249183 A055641(a(n)) = A249304(n).
%e A249183 .   0:                                  1
%e A249183 .   1:                                 111
%e A249183 .   2:                                11011
%e A249183 .   3:                               1110111
%e A249183 .   4:                              110101011
%e A249183 .   5:                             11100000111
%e A249183 .   6:                            1101100011011
%e A249183 .   7:                           111011101110111
%e A249183 .   8:                          11010101010101011
%e A249183 .   9:                         1110000000000000111
%e A249183 .  10:                        110110000000000011011
%e A249183 .  11:                       11101110000000001110111
%e A249183 .  12:                      1101010110000000110101011
%e A249183 .  13:                     111000001110000011100000111
%e A249183 .  14:                    11011000110110001101100011011
%e A249183 .  15:                   1110111011101110111011101110111
%e A249183 .  16:                  110101010101010101010101010101011
%e A249183 .  17:                 11100000000000000000000000000000111
%e A249183 .  18:                1101100000000000000000000000000011011
%e A249183 .  19:               111011100000000000000000000000001110111
%e A249183 .  20:              11010101100000000000000000000000110101011
%e A249183 .  21:             1110000011100000000000000000000011100000111
%e A249183 .  22:            110110001101100000000000000000001101100011011
%e A249183 .  23:           11101110111011100000000000000000111011101110111
%e A249183 .  24:          1101010101010101100000000000000011010101010101011
%e A249183 .  25:         111000000000000011100000000000001110000000000000111
%e A249183 .  26:        11011000000000001101100000000000110110000000000011011
%e A249183 .  27:       1110111000000000111011100000000011101110000000001110111
%e A249183 .  28:      110101011000000011010101100000001101010110000000110101011
%e A249183 .  29:     11100000111000001110000011100000111000001110000011100000111
%e A249183 .  30:    1101100011011000110110001101100011011000110110001101100011011
%e A249183 .  31:   111011101110111011101110111011101110111011101110111011101110111
%e A249183 .  32:  11010101010101010101010101010101010101010101010101010101010101011 .
%t A249183 a[n_] := FromDigits[Mod[Riffle[Binomial[n, Range[0, n]], Binomial[n - 1, Range[0, n - 1]]], 2]]; Array[a, 15, 0] (* _Amiram Eldar_, Jul 28 2023 *)
%o A249183 (Haskell)
%o A249183 a249183 = foldr (\b v -> 10 * v + b) 0 . a249133_row
%Y A249183 Cf. A249133, A249184 (decimal), A007088, A006943.
%K A249183 nonn
%O A249183 0,2
%A A249183 _Reinhard Zumkeller_, Nov 14 2014