This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249183 #11 Jul 28 2023 10:36:57 %S A249183 1,111,11011,1110111,110101011,11100000111,1101100011011, %T A249183 111011101110111,11010101010101011,1110000000000000111, %U A249183 110110000000000011011,11101110000000001110111,1101010110000000110101011,111000001110000011100000111,11011000110110001101100011011 %N A249183 a(n) = row n of triangle A249133, concatenated. %H A249183 Reinhard Zumkeller, <a href="/A249183/b249183.txt">Table of n, a(n) for n = 0..500</a> %F A249183 a(n) = Sum_{k=0..2*n} A249133(n,k)*10^k. %F A249183 a(n) = A007088(A249184(n)); %F A249183 A055641(a(n)) = A249304(n). %e A249183 . 0: 1 %e A249183 . 1: 111 %e A249183 . 2: 11011 %e A249183 . 3: 1110111 %e A249183 . 4: 110101011 %e A249183 . 5: 11100000111 %e A249183 . 6: 1101100011011 %e A249183 . 7: 111011101110111 %e A249183 . 8: 11010101010101011 %e A249183 . 9: 1110000000000000111 %e A249183 . 10: 110110000000000011011 %e A249183 . 11: 11101110000000001110111 %e A249183 . 12: 1101010110000000110101011 %e A249183 . 13: 111000001110000011100000111 %e A249183 . 14: 11011000110110001101100011011 %e A249183 . 15: 1110111011101110111011101110111 %e A249183 . 16: 110101010101010101010101010101011 %e A249183 . 17: 11100000000000000000000000000000111 %e A249183 . 18: 1101100000000000000000000000000011011 %e A249183 . 19: 111011100000000000000000000000001110111 %e A249183 . 20: 11010101100000000000000000000000110101011 %e A249183 . 21: 1110000011100000000000000000000011100000111 %e A249183 . 22: 110110001101100000000000000000001101100011011 %e A249183 . 23: 11101110111011100000000000000000111011101110111 %e A249183 . 24: 1101010101010101100000000000000011010101010101011 %e A249183 . 25: 111000000000000011100000000000001110000000000000111 %e A249183 . 26: 11011000000000001101100000000000110110000000000011011 %e A249183 . 27: 1110111000000000111011100000000011101110000000001110111 %e A249183 . 28: 110101011000000011010101100000001101010110000000110101011 %e A249183 . 29: 11100000111000001110000011100000111000001110000011100000111 %e A249183 . 30: 1101100011011000110110001101100011011000110110001101100011011 %e A249183 . 31: 111011101110111011101110111011101110111011101110111011101110111 %e A249183 . 32: 11010101010101010101010101010101010101010101010101010101010101011 . %t A249183 a[n_] := FromDigits[Mod[Riffle[Binomial[n, Range[0, n]], Binomial[n - 1, Range[0, n - 1]]], 2]]; Array[a, 15, 0] (* _Amiram Eldar_, Jul 28 2023 *) %o A249183 (Haskell) %o A249183 a249183 = foldr (\b v -> 10 * v + b) 0 . a249133_row %Y A249183 Cf. A249133, A249184 (decimal), A007088, A006943. %K A249183 nonn %O A249183 0,2 %A A249183 _Reinhard Zumkeller_, Nov 14 2014