This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249189 #18 Apr 15 2021 05:14:35 %S A249189 4,3,7,6,8,7,9,2,3,0,4,5,2,9,5,3,2,7,7,6,7,3,5,3,9,8,8,1,4,0,8,9,2,9, %T A249189 0,8,6,5,1,8,7,4,5,4,4,5,6,5,1,1,3,3,4,4,4,2,3,8,5,7,2,4,2,1,1,5,8,9, %U A249189 0,3,8,7,6,8,9,1,8,6,5,8,9,5,5,4,2,0,6,6,2,9,9,3,5,5,1,2,1,7,2,6,3,6 %N A249189 Decimal expansion of Hayman's constant in Landau's Theorem. %C A249189 Named after the British mathematician Walter Kurt Hayman (1926-2020). - _Amiram Eldar_, Apr 15 2021 %D A249189 Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 421. %H A249189 Steven Finch, <a href="/A249186/a249186.pdf">Goldberg’s Zero-One Constants</a>, May 21, 2014. [Cached copy, with permission of the author] %H A249189 W. K. Hayman, <a href="https://doi.org/10.1017/S0305004100023707">Some remarks on Schottky's theorem</a>, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 43, No. 4 (1947), pp. 442-454. %H A249189 Wan Tzei Lai, <a href="https://www.sciengine.com/publisher/scp/journal/Math%20A0/22/2/10.1360/ya1979-22-2-129">The exact value of Hayman's constant in Landau's Theorem</a>, Scientia Sinica, Vol. 22, No. 2 (1979), pp. 129-134. %H A249189 Wikipedia, <a href="http://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_de_Landau">Théorème de Landau</a>, [in French]. %F A249189 K = (1/(4*Pi^2))*Gamma(1/4)^4. %e A249189 4.37687923045295327767353988140892908651874544565... %t A249189 K = (1/(4*Pi^2))*Gamma[1/4]^4; RealDigits[K, 10, 102] // First %o A249189 (PARI) (1/(4*Pi^2))*gamma(1/4)^4 \\ _Michel Marcus_, Oct 23 2014 %Y A249189 Cf. A068466. %K A249189 nonn,cons,easy %O A249189 1,1 %A A249189 _Jean-François Alcover_, Oct 23 2014