This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249190 #8 Feb 24 2018 09:25:59 %S A249190 126,250,496,984,1952,3872,7680,15234,30218,59940,118896,235840, %T A249190 467808,927936,1840638,3651058,7242176,14365456,28495072,56522336, %U A249190 112116736,222392834,441134610,875027044,1735688632,3442882192,6829242048 %N A249190 Number of length n+6 0..1 arrays with no seven consecutive terms having four times the sum of any three elements equal to three times the sum of the remaining four. %C A249190 Column 1 of A249197. %H A249190 R. H. Hardin, <a href="/A249190/b249190.txt">Table of n, a(n) for n = 1..210</a> %F A249190 Empirical: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6). %F A249190 Empirical g.f.: 2*x*(63 + 62*x + 60*x^2 + 56*x^3 + 48*x^4 + 32*x^5) / (1 - x - x^2 - x^3 - x^4 - x^5 - x^6). - _Colin Barker_, Feb 24 2018 %e A249190 Some solutions for n=6: %e A249190 ..0....0....1....0....1....1....1....0....0....0....0....1....1....0....0....0 %e A249190 ..1....1....0....1....1....1....1....0....0....1....1....0....1....1....1....0 %e A249190 ..0....0....0....1....1....0....0....1....1....0....1....1....1....0....1....1 %e A249190 ..1....0....0....1....0....1....1....0....0....1....1....1....1....0....1....1 %e A249190 ..0....1....1....0....0....1....0....1....1....0....1....0....1....1....1....0 %e A249190 ..0....1....0....0....1....1....1....0....0....0....0....1....1....0....1....1 %e A249190 ..0....1....1....0....1....1....0....1....1....0....0....0....0....0....0....1 %e A249190 ..1....1....0....1....0....1....1....1....0....0....0....1....1....0....1....1 %e A249190 ..1....0....0....1....1....0....0....1....0....1....1....0....1....0....1....0 %e A249190 ..0....0....0....1....0....0....1....0....0....1....1....1....1....0....0....1 %e A249190 ..0....1....0....1....1....0....0....1....1....1....1....0....1....1....0....0 %e A249190 ..1....0....1....1....1....1....0....1....0....0....0....0....0....0....0....1 %Y A249190 Cf. A249197. %K A249190 nonn %O A249190 1,1 %A A249190 _R. H. Hardin_, Oct 23 2014