cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249205 Decimal expansion of the logarithmic capacity of the unit disk.

This page as a plain text file.
%I A249205 #18 Sep 03 2023 14:27:57
%S A249205 5,9,0,1,7,0,2,9,9,5,0,8,0,4,8,1,1,3,0,2,2,6,6,8,9,7,0,2,7,9,2,4,4,2,
%T A249205 9,3,6,1,6,8,5,8,3,1,7,4,4,0,7,2,3,6,4,9,7,5,7,9,3,2,1,9,9,7,0,2,1,5,
%U A249205 2,0,9,0,3,6,0,3,5,7,8,9,7,4,8,9,2,2,9,3,0,8,0,9,7,9,0,3,9,7,7,1
%N A249205 Decimal expansion of the logarithmic capacity of the unit disk.
%D A249205 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.9 Integer Chebyshev constants, p. 268.
%H A249205 Steven Finch, <a href="/A249205/a249205.pdf">Electrical capacitance</a> [Cached copy, with permission of the author]
%F A249205 Equals (1/(4*Pi^(3/2)))*Gamma(1/4)^2.
%F A249205 Equals hypergeom([1/2, 1/2], [1], 1/2)/2. - _Gerry Martens_, Jul 31 2023
%e A249205 0.59017029950804811302266897027924429361685831744...
%t A249205 k = (1/(4*Pi^(3/2)))*Gamma[1/4]^2; RealDigits[k, 10, 100] // First
%o A249205 (PARI) (1/(4*Pi^(3/2)))*gamma(1/4)^2 \\ _Michel Marcus_, Sep 03 2023
%Y A249205 Cf. A068466, A249206, A249220.
%K A249205 nonn,cons,easy
%O A249205 0,1
%A A249205 _Jean-François Alcover_, Oct 23 2014