cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249212 T(n,k)=Number of length n+6 0..k arrays with no seven consecutive terms having five times the sum of any two elements equal to two times the sum of the remaining five.

This page as a plain text file.
%I A249212 #6 Jul 23 2025 11:54:54
%S A249212 126,1792,250,14336,4586,496,67452,51200,11874,984,242494,294568,
%T A249212 183516,30876,1952,714980,1267754,1287632,658448,80354,3872,1826748,
%U A249212 4353482,6631348,5630090,2363528,208876,7680,4173442,12777540,26526142,34695508
%N A249212 T(n,k)=Number of length n+6 0..k arrays with no seven consecutive terms having five times the sum of any two elements equal to two times the sum of the remaining five.
%C A249212 Table starts
%C A249212 ...126....1792......14336.......67452.......242494........714980........1826748
%C A249212 ...250....4586......51200......294568......1267754.......4353482.......12777540
%C A249212 ...496...11874.....183516.....1287632......6631348......26526142.......89437990
%C A249212 ...984...30876.....658448.....5630090.....34695508.....161678612......626273302
%C A249212 ..1952...80354....2363528....24619804....181549572.....985612414.....4386401650
%C A249212 ..3872..208876....8486156...107662502....950035900....6008974124....30726981418
%C A249212 ..7680..541624...30475714...470797744...4971575032...36636435714...215266489016
%C A249212 .15234.1400008..109474166..2058664560..26016562386..223372525098..1508222615012
%C A249212 .30218.3618986..393232196..9001977388.136146815610.1361915986824.10567758194606
%C A249212 .59940.9363890.1412652056.39365277268.712472439202.8303744023910.74046470379458
%H A249212 R. H. Hardin, <a href="/A249212/b249212.txt">Table of n, a(n) for n = 1..174</a>
%F A249212 Empirical for column k:
%F A249212 k=1: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6)
%e A249212 Some solutions for n=3 k=4
%e A249212 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
%e A249212 ..0....0....1....1....1....0....0....1....0....0....0....0....0....0....0....0
%e A249212 ..1....0....3....3....0....3....2....2....4....1....1....4....0....4....0....3
%e A249212 ..2....0....0....4....3....3....2....2....1....2....4....1....2....3....1....4
%e A249212 ..1....0....1....1....1....1....0....2....3....1....2....1....2....0....0....4
%e A249212 ..1....4....3....3....3....2....4....1....2....3....2....1....3....2....3....0
%e A249212 ..3....0....3....3....1....4....0....4....2....2....4....1....3....4....1....4
%e A249212 ..3....2....4....4....4....0....0....1....0....4....2....2....0....0....3....0
%e A249212 ..1....3....1....4....3....4....2....1....3....3....0....0....1....3....2....0
%Y A249212 Column 1 is A249190
%Y A249212 Column 2 is A249191
%K A249212 nonn,tabl
%O A249212 1,1
%A A249212 _R. H. Hardin_, Oct 23 2014