This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249246 #16 Jan 15 2015 18:40:08 %S A249246 1,3,6,15,18,30,24,45,30,60,36,75,48,90,54,105,60,120,66,135,78,150, %T A249246 84,165,90,180,96,195,108,210,114,225,120,240,126,255,138,270,144,285, %U A249246 150,300,156,315,168,330,174,345,180,360,186,375,198,390,204,405,210,420,216,435 %N A249246 Start with a single equilateral triangle for n=0; for the odd n-th generation add a triangle at each expandable side of the triangles of the (n-1)-th generation (this is the "vertex to side" version); for the even n-th generation use the "vertex to vertex" version; a(n) is the number of triangles in the n-th generation. %C A249246 The construction rules alternate between "vertex to side" (A101946 & companions) and "vertex to vertex" (A061777 & companions). 'Vertex to side' means vertex of n-th generation triangle touches the middle of a side of the (n-1)-th generation triangle. See the link with an illustration. The even terms are the same as in A248969. Note that the triangles overlap. %H A249246 Kival Ngaokrajang, <a href="/A249246/a249246.pdf">Illustration of initial terms</a> %F A249246 Empirical g.f.: (3*x^11 + x^10 + 12*x^9 + 5*x^8 + 15*x^7 + 6*x^6 + 15*x^5 + 12*x^4 + 12*x^3 + 5*x^2 + 3*x + 1) / ((x-1)^2*(x+1)^2*(x^2+1)*(x^4+1)). - _Colin Barker_, Oct 24 2014 %o A249246 (PARI) %o A249246 { %o A249246 c2=0;c3=0;c5=3; %o A249246 for(n=0,100, %o A249246 if (Mod(n,2)==0, %o A249246 \\even %o A249246 if (n<1,a(n)=1,c3=c3+c2;a=6*c3); %o A249246 c1=n/8+3/4; %o A249246 if (c1==floor(c1),c2=2,c2=1) %o A249246 , %o A249246 \\odd %o A249246 a=c5; %o A249246 if (n<=1,c4=12,c4=15); %o A249246 c5=c5+c4 %o A249246 ); %o A249246 print1(a", ") %o A249246 ) %o A249246 } %Y A249246 Vertex to vertex: A061777, A247618, A247619, A247620. %Y A249246 Vertex to side: A101946, A247903, A247904, A247905. %Y A249246 Cf. A248969. %K A249246 nonn %O A249246 0,2 %A A249246 _Kival Ngaokrajang_, Oct 23 2014 %E A249246 Edited. Name and comment reformulated. - _Wolfdieter Lang_, Nov 04 2014