cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249264 Sequence of distinct least nonnegative numbers such that the average of the first n terms is a triangular number.

This page as a plain text file.
%I A249264 #19 Nov 04 2014 22:39:52
%S A249264 0,2,1,9,3,21,6,38,10,60,15,87,112,28,148,36,189,45,235,55,286,66,342,
%T A249264 78,403,91,469,105,540,120,616,136,697,153,783,171,874,190,970,210,
%U A249264 1071,231,1177,253,1288,276,1404,300,1525,325,1651,351,1782,378,1918,406,2059,435,2205,465
%N A249264 Sequence of distinct least nonnegative numbers such that the average of the first n terms is a triangular number.
%C A249264 Similar to A248983 except a(1) = 0, the zeroth triangular number.
%C A249264 Note that the sum of the first 12 terms is 252. Also, one can show that (252+sum_{i=7..n}(A000566(n)+A000217(n)))/(2*n) = n*(n+1)/2. So, for n > 6, if a(2*k-1) = A000566(k) and a(2*k-2) = A000217(k) for all 6 < k <= n, then a(2*n) = n*(n+1)/2.
%C A249264 Similarly, for n > 6, if a(2*k-1) = A000566(k) and a(2*k) = A000217(k) for all 6 < k <= n, then a(2*n+1) = A000566(n).
%F A249264 Empirical g.f.: x^2*(66*x^16-66*x^15-153*x^14+153*x^13+91*x^12-91*x^11-3*x^2-x-2) / ((x-1)^3*(x+1)^3). - _Colin Barker_, Oct 24 2014
%F A249264 Conjectured: For n > 6, a(2*n-1) = A000566(n) and a(2*n) = A000217(n).
%o A249264 (PARI) v=[]; n=0; while(n<5000, num=(vecsum(v)+n); if(num%(#v+1)==0&&vecsearch(vecsort(v),n)==0,for(i=0,n,if(i*(i+1)/2>(num/(#v+1)), break); if(i*(i+1)/2==(num/(#v+1)), print1(n, ", "); v=concat(v, n); n=0; break))); n++)
%Y A249264 Cf. A000217, A248983.
%K A249264 nonn
%O A249264 1,2
%A A249264 _Derek Orr_, Oct 23 2014