A249271 Decimal expansion of the mean value over all positive integers of a function giving the least quadratic nonresidue modulo a given odd integer (this function is precisely defined in A053761).
3, 1, 4, 7, 7, 5, 5, 1, 4, 8, 5, 0, 2, 4, 0, 0, 3, 1, 2, 5, 1, 6, 6, 7, 4, 9, 5, 5, 8, 7, 9, 7, 6, 9, 2, 0, 9, 2, 7, 2, 9, 3, 7, 7, 4, 8, 7, 9, 3, 3, 9, 8, 8, 6, 4, 0, 5, 9, 6, 4, 7, 0, 2, 0, 6, 6, 4, 7, 8, 1, 1, 8, 0, 0, 9, 1, 6, 7, 2, 4, 6, 7, 7, 9, 9, 7, 9, 4, 5, 2, 0, 9, 4, 8, 8, 2, 8, 7, 9, 7, 8, 6, 9, 1
Offset: 1
Examples
3.147755148502400312516674955879769209272937748793398864...
References
- Steven R. Finch, Mathematical Constants, Cambridge Univ. Press, 2003, Meissel-Mertens constants: Quadratic residues, pp. 96—98.
Links
- Robert Baillie and Samuel S. Wagstaff, Lucas pseudoprimes, Mathematics of Computation 35 (1980), pp. 1391-1417.
Programs
-
Mathematica
digits = 104; Clear[s]; s[m_] := s[m] = 1 + Sum[(Prime[j] + 1)*2^(-j + 1)* Product[1 - 1/Prime[i], {i, 1, j - 1}] // N[#, digits + 100]&, {j, 2, m}] ; s[10]; s[m = 20]; While[RealDigits[s[m]] != RealDigits[s[m/2]], Print[m]; m = 2*m]; RealDigits[s[m], 10, digits] // First
-
PARI
do(lim)=my(p=2,pr=1.,s=1); forprime(q=3,lim, pr*=(1-1/p)/2; s+=(q+1)*pr; p=q); s \\ Charles R Greathouse IV, Dec 20 2017
Formula
1 + sum_{j=2..m} (p_j + 1)*2^(-j+1)*prod_{i=1..j-1} (1 - 1/p_i), where p_j is the j-th prime number.