A249273 Decimal expansion of a constant associated with the set of all complex nonprincipal Dirichlet characters.
2, 5, 3, 5, 0, 5, 4, 1, 8, 0, 3, 6, 0, 4, 3, 8, 8, 3, 0, 1, 6, 5, 5, 3, 0, 0, 0, 7, 1, 8, 5, 9, 0, 8, 3, 5, 0, 8, 6, 1, 1, 7, 8, 0, 1, 3, 8, 5, 3, 7, 0, 1, 6, 4, 5, 3, 7, 7, 5, 1, 2, 6, 4, 9, 4, 3, 6, 4, 1, 4, 7, 5, 3, 8, 2, 9, 6, 7, 8, 5, 4, 7, 0, 1, 7, 0, 3, 3, 6, 6, 5, 1, 7, 9, 1, 0, 9, 0, 3, 4, 2, 4, 5
Offset: 1
Examples
2.5350541803604388301655300071859083508611780138537...
Links
- Steven R. Finch, Average least nonresidues, December 4, 2013. [Cached copy, with permission of the author]
- G. Martin and P. Pollack, The average least character non-residue and further variations on a theme of Erdős, J. London Math. Soc. 87 (2013) 22-42.
Programs
-
Mathematica
digits = 103; Clear[s]; s[m_] := s[m] = Sum[Prime[k]^2/Product[Prime[j] + 1, {j, 1, k}] , {k, 1, m}] // N[#, digits + 100]&; s[10]; s[m = 20]; While[RealDigits[s[m]] != RealDigits[s[m/2]], Print[m, " ", N[s[m]]]; m = 2*m]; RealDigits[s[m], 10, digits] // First
Formula
sum_{k >= 1} p_k^2/((p_1 + 1)(p_2 + 1)...(p_k + 1)), where p_k is the k-th prime number.