cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249274 Decimal expansion of a constant associated with the set of all complex primitive Dirichlet characters.

Original entry on oeis.org

2, 1, 5, 1, 4, 3, 5, 1, 0, 5, 6, 8, 6, 1, 4, 6, 5, 4, 8, 6, 2, 4, 2, 8, 1, 0, 0, 5, 0, 9, 6, 5, 8, 4, 0, 5, 3, 2, 6, 3, 3, 0, 4, 5, 7, 1, 8, 5, 8, 4, 5, 7, 8, 9, 5, 8, 8, 9, 7, 3, 3, 3, 9, 1, 0, 7, 8, 1, 8, 4, 2, 8, 7, 3, 2, 5, 7, 4, 6, 4, 5, 2, 0, 7, 1, 8, 4, 6, 3, 0, 4, 2, 4, 4, 6, 9, 1, 7, 9, 3, 2
Offset: 1

Views

Author

Jean-François Alcover, Oct 24 2014

Keywords

Examples

			2.1514351056861465486242810050965840532633...
		

Crossrefs

Programs

  • Mathematica
    digits = 101; Clear[s, P]; P[j_] := P[j] = Product[(Prime[k]^2 - Prime[k] - 1)/((Prime[k] + 1)^2*(Prime[k] - 1)), {k, 1, j - 1}] // N[#, digits + 100]&; s[m_] := s[m] = Sum[Prime[j]^4/((Prime[j] + 1)^2*(Prime[j] - 1))*P[j], {j, 1, m}]; s[10]; s[m = 20]; While[ RealDigits[s[m]] != RealDigits[s[m/2]], Print[m, " ", N[s[m]]]; m = 2*m]; RealDigits[s[m], 10, digits] // First

Formula

sum_{q} q^4/((q+1)^2 (q-1)) prod_{p