A249286 Number of length n+3 0..4 arrays with no four consecutive terms having the sum of any three elements equal to three times the fourth.
524, 2228, 9504, 40588, 173368, 740616, 3164312, 13520668, 57772560, 246857788, 1054810472, 4507167504, 19258980852, 82293014888, 351635522044, 1502528043892, 6420257600360, 27433569837528, 117222829267252
Offset: 1
Keywords
Examples
Some solutions for n=5 ..2....0....0....1....1....2....2....1....1....1....0....2....0....0....0....0 ..3....4....3....0....1....0....1....2....0....2....2....1....2....3....1....2 ..1....4....1....4....2....0....0....1....0....4....0....4....2....2....1....2 ..0....0....3....4....3....0....3....3....2....3....0....2....3....1....4....0 ..3....4....2....1....3....4....4....0....3....2....1....4....3....4....0....0 ..2....0....4....4....1....3....3....4....4....2....4....3....3....2....4....1 ..0....3....2....4....4....2....0....0....2....0....4....0....1....2....4....1 ..2....2....3....2....1....2....3....1....0....3....1....3....3....1....4....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A249290.
Formula
Empirical: a(n) = 3*a(n-1) +3*a(n-2) +9*a(n-3) +35*a(n-4) -65*a(n-5) -151*a(n-6) -317*a(n-7) -534*a(n-8) -140*a(n-9) +1280*a(n-10) +2126*a(n-11) +2048*a(n-12) +5830*a(n-13) +4946*a(n-14) +11778*a(n-15) +25333*a(n-16) +19483*a(n-17) -11542*a(n-18) -9074*a(n-19) -7639*a(n-20) -13027*a(n-21) +38961*a(n-22) -25267*a(n-23) -187805*a(n-24) -120777*a(n-25) +143132*a(n-26) +88370*a(n-27) -57497*a(n-28) -100517*a(n-29) -152210*a(n-30) -3304*a(n-31) +156512*a(n-32) +254068*a(n-33) +111836*a(n-34) -84272*a(n-35) -31976*a(n-36) +9504*a(n-37) -3632*a(n-38) -144*a(n-39) +576*a(n-40).
Comments