cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A249284 Number of length n+3 0..2 arrays with no four consecutive terms having the sum of any three elements equal to three times the fourth.

Original entry on oeis.org

66, 168, 428, 1094, 2792, 7132, 18232, 46616, 119176, 304696, 779066, 1992002, 5093330, 13023126, 33299000, 85142802, 217703012, 556648464, 1423304428, 3639273226, 9305324178, 23792953554, 60836640416, 155554327024, 397739724496
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2014

Keywords

Comments

Column 2 of A249290

Examples

			Some solutions for n=9
..1....0....2....2....1....1....0....1....1....1....0....1....1....2....2....1
..1....0....1....0....0....1....1....0....1....0....0....1....1....0....1....0
..0....1....0....0....2....0....2....2....2....2....0....1....2....0....0....2
..1....0....0....0....2....1....0....2....2....0....2....2....1....0....0....2
..0....1....2....1....0....0....0....0....1....2....2....2....2....1....1....2
..2....0....2....0....0....0....0....1....2....1....0....0....2....0....1....0
..0....1....2....0....0....1....2....0....2....2....2....2....1....0....0....0
..2....1....0....1....1....1....0....1....2....1....0....2....0....1....0....2
..0....0....0....1....2....0....2....0....0....2....2....1....0....0....2....2
..2....0....2....1....2....1....1....0....0....1....1....2....0....2....1....2
..2....0....2....2....1....0....2....0....1....2....2....0....2....0....2....1
..2....2....1....2....2....0....2....1....2....0....1....0....2....0....2....0
		

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) +3*a(n-3) +7*a(n-4) +a(n-5) -6*a(n-6) -12*a(n-7) -14*a(n-8) -14*a(n-9) -7*a(n-10) +3*a(n-11) +2*a(n-12)

A249285 Number of length n+3 0..3 arrays with no four consecutive terms having the sum of any three elements equal to three times the fourth.

Original entry on oeis.org

204, 660, 2144, 6960, 22572, 73204, 237480, 770416, 2499164, 8107012, 26298608, 85311248, 276744204, 897739412, 2912207432, 9447011744, 30645489228, 99411957620, 322485877472, 1046123080816, 3393554802188, 11008469603188
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2014

Keywords

Examples

			Some solutions for n=6:
  3  0  3  2  1  1  3  0  0  0  3  3  1  2  0  2
  3  1  3  2  0  1  1  0  1  2  1  3  0  3  2  2
  1  1  2  1  3  1  3  2  0  2  0  1  1  2  2  1
  2  1  3  1  3  0  1  0  2  0  1  1  1  2  0  0
  0  0  2  3  1  0  3  2  3  3  3  2  3  0  2  0
  2  3  0  3  1  1  0  2  0  1  1  2  0  0  0  1
  2  3  1  3  3  0  3  0  1  3  0  0  2  2  2  1
  3  0  3  1  3  1  3  3  1  1  2  1  0  3  1  3
  3  1  1  1  2  0  3  2  0  2  0  0  0  2  2  0
		

Crossrefs

Column 3 of A249290.

Formula

Empirical: a(n) = 2*a(n-1) + 2*a(n-2) + 4*a(n-3) + 8*a(n-4) + 4*a(n-5) - 8*a(n-6) - 2*a(n-7) + 3*a(n-8).
Empirical g.f.: 4*x*(51 + 63*x + 104*x^2 + 134*x^3 + 23*x^4 - 133*x^5 - 18*x^6 + 48*x^7) / (1 - 2*x - 2*x^2 - 4*x^3 - 8*x^4 - 4*x^5 + 8*x^6 + 2*x^7 - 3*x^8). - Colin Barker, Nov 09 2018

A249286 Number of length n+3 0..4 arrays with no four consecutive terms having the sum of any three elements equal to three times the fourth.

Original entry on oeis.org

524, 2228, 9504, 40588, 173368, 740616, 3164312, 13520668, 57772560, 246857788, 1054810472, 4507167504, 19258980852, 82293014888, 351635522044, 1502528043892, 6420257600360, 27433569837528, 117222829267252
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2014

Keywords

Comments

Column 4 of A249290.

Examples

			Some solutions for n=5
..2....0....0....1....1....2....2....1....1....1....0....2....0....0....0....0
..3....4....3....0....1....0....1....2....0....2....2....1....2....3....1....2
..1....4....1....4....2....0....0....1....0....4....0....4....2....2....1....2
..0....0....3....4....3....0....3....3....2....3....0....2....3....1....4....0
..3....4....2....1....3....4....4....0....3....2....1....4....3....4....0....0
..2....0....4....4....1....3....3....4....4....2....4....3....3....2....4....1
..0....3....2....4....4....2....0....0....2....0....4....0....1....2....4....1
..2....2....3....2....1....2....3....1....0....3....1....3....3....1....4....0
		

Crossrefs

Cf. A249290.

Formula

Empirical: a(n) = 3*a(n-1) +3*a(n-2) +9*a(n-3) +35*a(n-4) -65*a(n-5) -151*a(n-6) -317*a(n-7) -534*a(n-8) -140*a(n-9) +1280*a(n-10) +2126*a(n-11) +2048*a(n-12) +5830*a(n-13) +4946*a(n-14) +11778*a(n-15) +25333*a(n-16) +19483*a(n-17) -11542*a(n-18) -9074*a(n-19) -7639*a(n-20) -13027*a(n-21) +38961*a(n-22) -25267*a(n-23) -187805*a(n-24) -120777*a(n-25) +143132*a(n-26) +88370*a(n-27) -57497*a(n-28) -100517*a(n-29) -152210*a(n-30) -3304*a(n-31) +156512*a(n-32) +254068*a(n-33) +111836*a(n-34) -84272*a(n-35) -31976*a(n-36) +9504*a(n-37) -3632*a(n-38) -144*a(n-39) +576*a(n-40).

A249287 Number of length n+3 0..5 arrays with no four consecutive terms having the sum of any three elements equal to three times the fourth.

Original entry on oeis.org

1098, 5646, 29100, 150112, 774542, 3996816, 20626236, 106449362, 549377682, 2835311880, 14632955578, 75520363990, 389759189220, 2011540365174, 10381526171750, 53578887648690, 276519776741626, 1427114135562896
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2014

Keywords

Comments

Column 5 of A249290

Examples

			Some solutions for n=4
..0....1....0....1....0....4....3....1....1....3....1....0....1....0....1....3
..2....4....5....3....4....0....3....0....2....0....2....3....0....1....4....2
..0....0....3....0....2....4....5....5....3....4....2....0....5....4....5....3
..0....0....5....5....5....1....4....5....5....3....5....2....0....3....0....5
..3....2....1....5....3....4....3....4....0....1....4....5....4....2....0....1
..0....0....0....1....3....5....1....5....3....1....1....5....1....5....4....1
..2....4....1....3....2....3....3....0....0....5....1....2....1....1....4....5
		

Formula

Empirical recurrence of order 87 (see link above)

A249288 Number of length n+3 0..6 arrays with no four consecutive terms having the sum of any three elements equal to three times the fourth.

Original entry on oeis.org

2070, 12600, 76856, 469072, 2863158, 17477172, 106687006, 651265876, 3975630136, 24269116850, 148150208272, 904379542250, 5520764471064, 33701382275398, 205729331323368, 1255870097060206, 7666430906270386, 46799555928424622
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2014

Keywords

Comments

Column 6 of A249290

Examples

			Some solutions for n=3
..3....4....2....5....2....2....5....0....1....5....3....2....0....4....4....0
..2....5....5....2....4....1....1....3....2....0....0....4....4....4....3....6
..4....3....5....5....2....2....0....1....2....1....4....0....4....1....4....6
..1....1....1....0....3....1....5....6....1....1....3....1....6....2....6....2
..5....2....2....3....4....3....4....3....6....4....4....6....6....4....5....3
..3....4....3....6....4....0....0....5....0....5....6....5....1....4....3....3
		

A249289 Number of length n+3 0..7 arrays with no four consecutive terms having the sum of any three elements equal to three times the fourth.

Original entry on oeis.org

3584, 25280, 178644, 1263044, 8930228, 63142432, 446465388, 3156873140, 22321652802, 157832259724, 1116002868810, 7891051581722, 55796177670214, 394524535750878, 2789610622867354, 19724825025520940, 139470619655277052
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2014

Keywords

Comments

Column 7 of A249290

Examples

			Some solutions for n=3
..2....6....5....2....4....0....4....0....0....4....6....0....0....2....2....2
..6....7....6....1....5....5....0....5....2....6....3....3....5....2....6....3
..6....5....2....4....4....2....6....1....4....3....1....0....6....7....3....0
..6....7....6....0....2....0....7....4....5....1....4....7....5....7....0....6
..5....6....5....7....3....4....7....3....6....7....3....3....6....5....7....5
..5....7....2....3....5....3....0....1....3....7....0....1....0....5....4....0
		

A249291 Number of length 1+3 0..n arrays with no four consecutive terms having the sum of any three elements equal to three times the fourth.

Original entry on oeis.org

14, 66, 204, 524, 1098, 2070, 3584, 5808, 8934, 13202, 18828, 26100, 35306, 46758, 60792, 77792, 98118, 122202, 150476, 183396, 221442, 265142, 315000, 371592, 435494, 507306, 587652, 677204, 776610, 886590, 1007864, 1141176, 1287294
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2014

Keywords

Examples

			Some solutions for n=10:
  3  3  2  5  3  1  7  2  9  5  9  1  9  6  0  0
  3  7  0  9  5  7 10  0  8  9  2  5  5  7  1  5
  1  3  8 10  6  7  3  1  7  8  1  9  3  0  2  9
  1  1  4  6  0  3 10  9  0  2 10  8  4  4 10  1
		

Crossrefs

Row 1 of A249290.

Formula

Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-5) + 2*a(n-6) - 3*a(n-7) +a(n- 8).
Empirical for n mod 6 = 0: a(n) = n^4 + (8/3)*n^3 + 5*n^2 + 3*n
Empirical for n mod 6 = 1: a(n) = n^4 + (8/3)*n^3 + 5*n^2 + 3*n + (7/3)
Empirical for n mod 6 = 2: a(n) = n^4 + (8/3)*n^3 + 5*n^2 + 3*n + (8/3)
Empirical for n mod 6 = 3: a(n) = n^4 + (8/3)*n^3 + 5*n^2 + 3*n - 3
Empirical for n mod 6 = 4: a(n) = n^4 + (8/3)*n^3 + 5*n^2 + 3*n + (16/3)
Empirical for n mod 6 = 5: a(n) = n^4 + (8/3)*n^3 + 5*n^2 + 3*n - (1/3).
Empirical g.f.: 2*x*(7 + 12*x + 17*x^2 + 29*x^3 + 7*x^5) / ((1 - x)^5*(1 + x)*(1 + x + x^2)). - Colin Barker, Nov 09 2018

A249292 Number of length 2+3 0..n arrays with no four consecutive terms having the sum of any three elements equal to three times the fourth.

Original entry on oeis.org

26, 168, 660, 2228, 5646, 12600, 25280, 46608, 80334, 131672, 206112, 311352, 455954, 649920, 904884, 1235024, 1654734, 2181960, 2836016, 3638460, 4613010, 5786924, 7188012, 8848968, 10803998, 13090368, 15748356, 18822884, 22359246
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2014

Keywords

Comments

Row 2 of A249290

Examples

			Some solutions for n=10
..4....0....9....7....5....3....9....2....1....3....3....1....1....5....1....4
..7....3....7....5....3....2....5....5....5....2....7....7...10....6....6...10
..4....7....2...10...10....8....6....8....3....1....5...10....1....6....9....3
..3....1....1....8...10....2....5....9....6...10....3....5....9....6...10....6
..7....0....0....2....6....8....9....3....7....9....4....7....7....7....5....0
		

Formula

Empirical: a(n) = 2*a(n-1) -2*a(n-2) +2*a(n-3) -a(n-4) +a(n-5) -a(n-6) +a(n-8) -2*a(n-9) +a(n-10) -a(n-11) +a(n-12) -2*a(n-13) +2*a(n-14) +2*a(n-18) -2*a(n-19) +a(n-20) -a(n-21) +a(n-22) -2*a(n-23) +a(n-24) -a(n-26) +a(n-27) -a(n-28) +2*a(n-29) -2*a(n-30) +2*a(n-31) -a(n-32)
Also a polynomial of degree 5 plus a linear quasipolynomial with period 360, the first 12 being:
Empirical for n mod 360 = 0: a(n) = n^5 + (7/3)*n^4 + (97/12)*n^3 + (7/20)*n^2 + (107/10)*n
Empirical for n mod 360 = 1: a(n) = n^5 + (7/3)*n^4 + (97/12)*n^3 + (7/20)*n^2 + (967/60)*n - (113/60)
Empirical for n mod 360 = 2: a(n) = n^5 + (7/3)*n^4 + (97/12)*n^3 + (7/20)*n^2 + (481/30)*n + (8/15)
Empirical for n mod 360 = 3: a(n) = n^5 + (7/3)*n^4 + (97/12)*n^3 + (7/20)*n^2 + (49/20)*n - (3/4)
Empirical for n mod 360 = 4: a(n) = n^5 + (7/3)*n^4 + (97/12)*n^3 + (7/20)*n^2 + (641/30)*n - (26/15)
Empirical for n mod 360 = 5: a(n) = n^5 + (7/3)*n^4 + (97/12)*n^3 + (7/20)*n^2 + (647/60)*n - (125/12)
Empirical for n mod 360 = 6: a(n) = n^5 + (7/3)*n^4 + (97/12)*n^3 + (7/20)*n^2 + (107/10)*n - (114/5)
Empirical for n mod 360 = 7: a(n) = n^5 + (7/3)*n^4 + (97/12)*n^3 + (7/20)*n^2 + (787/60)*n - (653/60)
Empirical for n mod 360 = 8: a(n) = n^5 + (7/3)*n^4 + (97/12)*n^3 + (7/20)*n^2 + (481/30)*n - (20/3)
Empirical for n mod 360 = 9: a(n) = n^5 + (7/3)*n^4 + (97/12)*n^3 + (7/20)*n^2 + (109/20)*n + (117/20)
Empirical for n mod 360 = 10: a(n) = n^5 + (7/3)*n^4 + (97/12)*n^3 + (7/20)*n^2 + (641/30)*n + (20/3)
Empirical for n mod 360 = 11: a(n) = n^5 + (7/3)*n^4 + (97/12)*n^3 + (7/20)*n^2 + (467/60)*n + (707/60)

A249293 Number of length 3+3 0..n arrays with no four consecutive terms having the sum of any three elements equal to three times the fourth.

Original entry on oeis.org

48, 428, 2144, 9504, 29100, 76856, 178644, 374540, 723300, 1314744, 2258528, 3717444, 5893024, 9039940, 13477788, 19618656, 27921268, 38978528, 53474096, 72214004, 96133160, 126348344, 164077052, 210790324, 268108160, 337868944
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2014

Keywords

Comments

Row 3 of A249290

Examples

			Some solutions for n=7
..6....2....4....0....0....4....2....6....4....6....0....2....2....1....2....0
..6....5....0....4....1....5....6....2....2....0....6....7....2....2....7....4
..1....5....1....3....0....2....5....3....7....0....2....6....1....2....7....1
..7....5....2....3....1....6....1....3....7....0....1....1....0....6....1....5
..5....1....7....1....1....2....3....2....0....2....4....3....4....3....3....2
..3....3....1....2....4....6....5....6....3....3....6....7....2....3....2....2
		

A249294 Number of length 4+3 0..n arrays with no four consecutive terms having the sum of any three elements equal to three times the fourth.

Original entry on oeis.org

88, 1094, 6960, 40588, 150112, 469072, 1263044, 3011088, 6514660, 13131956, 24755440, 44396112, 76182120, 125764540, 200780652, 311698092, 471201156, 696406084, 1008398272, 1433424724, 2003585272, 2758886876, 3745643452
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2014

Keywords

Comments

Row 4 of A249290.

Examples

			Some solutions for n=5
..3....3....3....0....1....1....3....4....3....4....4....1....0....4....0....3
..5....1....2....3....0....0....0....2....5....4....4....1....1....1....1....4
..3....5....4....2....5....4....4....1....5....1....2....3....3....0....3....0
..5....5....5....1....4....0....4....0....1....1....1....1....3....5....2....0
..3....1....1....5....5....3....1....0....2....5....5....2....4....0....5....3
..5....5....4....1....5....3....0....1....3....4....4....1....1....2....4....4
..0....2....5....5....1....4....0....4....1....5....1....2....3....3....3....0
		

Crossrefs

Cf. A249290.
Showing 1-10 of 13 results. Next