cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249291 Number of length 1+3 0..n arrays with no four consecutive terms having the sum of any three elements equal to three times the fourth.

Original entry on oeis.org

14, 66, 204, 524, 1098, 2070, 3584, 5808, 8934, 13202, 18828, 26100, 35306, 46758, 60792, 77792, 98118, 122202, 150476, 183396, 221442, 265142, 315000, 371592, 435494, 507306, 587652, 677204, 776610, 886590, 1007864, 1141176, 1287294
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2014

Keywords

Examples

			Some solutions for n=10:
  3  3  2  5  3  1  7  2  9  5  9  1  9  6  0  0
  3  7  0  9  5  7 10  0  8  9  2  5  5  7  1  5
  1  3  8 10  6  7  3  1  7  8  1  9  3  0  2  9
  1  1  4  6  0  3 10  9  0  2 10  8  4  4 10  1
		

Crossrefs

Row 1 of A249290.

Formula

Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-5) + 2*a(n-6) - 3*a(n-7) +a(n- 8).
Empirical for n mod 6 = 0: a(n) = n^4 + (8/3)*n^3 + 5*n^2 + 3*n
Empirical for n mod 6 = 1: a(n) = n^4 + (8/3)*n^3 + 5*n^2 + 3*n + (7/3)
Empirical for n mod 6 = 2: a(n) = n^4 + (8/3)*n^3 + 5*n^2 + 3*n + (8/3)
Empirical for n mod 6 = 3: a(n) = n^4 + (8/3)*n^3 + 5*n^2 + 3*n - 3
Empirical for n mod 6 = 4: a(n) = n^4 + (8/3)*n^3 + 5*n^2 + 3*n + (16/3)
Empirical for n mod 6 = 5: a(n) = n^4 + (8/3)*n^3 + 5*n^2 + 3*n - (1/3).
Empirical g.f.: 2*x*(7 + 12*x + 17*x^2 + 29*x^3 + 7*x^5) / ((1 - x)^5*(1 + x)*(1 + x + x^2)). - Colin Barker, Nov 09 2018