A249291 Number of length 1+3 0..n arrays with no four consecutive terms having the sum of any three elements equal to three times the fourth.
14, 66, 204, 524, 1098, 2070, 3584, 5808, 8934, 13202, 18828, 26100, 35306, 46758, 60792, 77792, 98118, 122202, 150476, 183396, 221442, 265142, 315000, 371592, 435494, 507306, 587652, 677204, 776610, 886590, 1007864, 1141176, 1287294
Offset: 1
Keywords
Examples
Some solutions for n=10: 3 3 2 5 3 1 7 2 9 5 9 1 9 6 0 0 3 7 0 9 5 7 10 0 8 9 2 5 5 7 1 5 1 3 8 10 6 7 3 1 7 8 1 9 3 0 2 9 1 1 4 6 0 3 10 9 0 2 10 8 4 4 10 1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 1 of A249290.
Formula
Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-5) + 2*a(n-6) - 3*a(n-7) +a(n- 8).
Empirical for n mod 6 = 0: a(n) = n^4 + (8/3)*n^3 + 5*n^2 + 3*n
Empirical for n mod 6 = 1: a(n) = n^4 + (8/3)*n^3 + 5*n^2 + 3*n + (7/3)
Empirical for n mod 6 = 2: a(n) = n^4 + (8/3)*n^3 + 5*n^2 + 3*n + (8/3)
Empirical for n mod 6 = 3: a(n) = n^4 + (8/3)*n^3 + 5*n^2 + 3*n - 3
Empirical for n mod 6 = 4: a(n) = n^4 + (8/3)*n^3 + 5*n^2 + 3*n + (16/3)
Empirical for n mod 6 = 5: a(n) = n^4 + (8/3)*n^3 + 5*n^2 + 3*n - (1/3).
Empirical g.f.: 2*x*(7 + 12*x + 17*x^2 + 29*x^3 + 7*x^5) / ((1 - x)^5*(1 + x)*(1 + x + x^2)). - Colin Barker, Nov 09 2018