This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249309 #7 Oct 25 2014 05:08:41 %S A249309 1,2,3,5,7,13,20,35,54,96,150,264,414,726,1140,1997,3136,5495,8631, %T A249309 15121,23752,41612,65363,114513,179876,315132,495008,867223,1362230, %U A249309 2386544,3748774,6567622,10316396 %N A249309 First row of spectral array W(Pi/2). %H A249309 A. Fraenkel and C. Kimberling, <a href="http://dx.doi.org/10.1016/0012-365X(94)90259-3">Generalized Wythoff arrays, shuffles and interspersions</a>, Discrete Mathematics 126 (1994) 137-149. %o A249309 (PARI) %o A249309 \\ The first row of the generalized Wythoff array W(h), %o A249309 \\ where h is an irrational number between 1 and 2. %o A249309 row1(h, m) = { %o A249309 my( %o A249309 a=vector(m, n, floor(n*h)), %o A249309 b=setminus(vector(m, n, n), a), %o A249309 w=[a[1]^2, b[a[1]]], %o A249309 j=3 %o A249309 ); %o A249309 while(1, %o A249309 if(j%2==1, %o A249309 if(w[j-1]<=#a, w=concat(w, a[w[j-1]]), return(w)) %o A249309 , %o A249309 if(w[j-2]<=#b, w=concat(w, b[w[j-2]]), return(w)) %o A249309 ); %o A249309 j++ %o A249309 ); %o A249309 w %o A249309 } %o A249309 allocatemem(10^9) %o A249309 row1(Pi/2, 10^7) %Y A249309 Cf. A007068, A022159, A022161, A022163, A022165. %K A249309 nonn %O A249309 1,2 %A A249309 _Colin Barker_, Oct 25 2014