cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249310 Expansion of x*(1+7*x-6*x^3)/(1-8*x^2+6*x^4).

This page as a plain text file.
%I A249310 #12 Sep 22 2019 09:18:11
%S A249310 1,7,8,50,58,358,416,2564,2980,18364,21344,131528,152872,942040,
%T A249310 1094912,6747152,7842064,48324976,56167040,346116896,402283936,
%U A249310 2478985312,2881269248,17755181120,20636450368,127167537088,147803987456,910809209984,1058613197440
%N A249310 Expansion of x*(1+7*x-6*x^3)/(1-8*x^2+6*x^4).
%C A249310 It seems that this is also the first row of the spectral array W(sqrt(10)-2).
%C A249310 It also seems that, for all k>0, the first row of W(sqrt(k^2+1)-k+1) has a generating function of the form x*(1+(2*k+1)*x-2*k*x^3)/(1-(2*k+2)*x^2+2*k*x^4).
%H A249310 Vincenzo Librandi, <a href="/A249310/b249310.txt">Table of n, a(n) for n = 1..1000</a>
%H A249310 A. Fraenkel and C. Kimberling, <a href="http://dx.doi.org/10.1016/0012-365X(94)90259-3">Generalized Wythoff arrays, shuffles and interspersions</a>, Discrete Mathematics 126 (1994) 137-149.
%H A249310 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,8,0,-6).
%t A249310 CoefficientList[Series[(1 + 7 x - 6 x^3)/(1 - 8 x^2 + 6 x^4), {x, 0, 40}], x] (* _Vincenzo Librandi_, Oct 25 2014 *)
%t A249310 LinearRecurrence[{0,8,0,-6},{1,7,8,50},30] (* _Harvey P. Dale_, Sep 22 2019 *)
%o A249310 (PARI) Vec((1+7*x-6*x^3)/(1-8*x^2+6*x^4) + O(x^100))
%Y A249310 Cf. A007068 (k=1), A022165 (k=2), A249311 (k=4), A249312 (k=5), A249313 (k=6).
%K A249310 nonn,easy
%O A249310 1,2
%A A249310 _Colin Barker_, Oct 25 2014