This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249329 #20 Dec 14 2014 02:50:24 %S A249329 1,7,8,55,62,435,497,3440,3937,27208,31145,215199,246344,1702099, %T A249329 1948443,13462620 %N A249329 First row of spectral array W(log(Pi)). %C A249329 log(Pi) = 1.144729885849400174143427351353058711647294812915311571513623... %C A249329 The sequence is generated from the Beatty sequence (A059561) and from the complement of the Beatty sequence (A059562) for log(Pi). %H A249329 A. Fraenkel and C. Kimberling, <a href="http://dx.doi.org/10.1016/0012-365X(94)90259-3">Generalized Wythoff arrays, shuffles and interspersions</a>, Discrete Mathematics 126 (1994) 137-149. %o A249329 (PARI) %o A249329 \\ Row i of the generalized Wythoff array W(h), %o A249329 \\ where h is an irrational number between 1 and 2, %o A249329 \\ and m is the number of terms in the vectors b and c. %o A249329 row(h, i, m) = { %o A249329 if(h<=1 || h>=2, print("Invalid value for h"); return); %o A249329 my( %o A249329 b=vector(m, n, floor(n*h)), \\ Beatty sequence for h %o A249329 c=vector(m, n, floor(n*h/(h-1))), \\ Complement of b %o A249329 w=[b[b[i]], c[b[i]]], %o A249329 j=3 %o A249329 ); %o A249329 while(1, %o A249329 if(j%2==1, %o A249329 if(w[j-1]<=#b, w=concat(w, b[w[j-1]]), return(w)) %o A249329 , %o A249329 if(w[j-2]<=#c, w=concat(w, c[w[j-2]]), return(w)) %o A249329 ); %o A249329 j++ %o A249329 ) %o A249329 } %o A249329 allocatemem(10^9) %o A249329 default(realprecision, 100) %o A249329 row(log(Pi), 1, 10^7) %Y A249329 Cf. A059561, A059562. %K A249329 nonn,more %O A249329 1,2 %A A249329 _Colin Barker_, Dec 03 2014