cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249334 Numbers for which the digital sum contains the same distinct digits as the digital product.

This page as a plain text file.
%I A249334 #23 Sep 01 2025 11:56:21
%S A249334 0,1,2,3,4,5,6,7,8,9,22,99,123,132,213,231,312,321,1124,1137,1142,
%T A249334 1173,1214,1241,1317,1371,1412,1421,1713,1731,2114,2141,2411,3117,
%U A249334 3171,3344,3434,3443,3711,4112,4121,4211,4334,4343,4433,7113,7131,7311,11125,11133
%N A249334 Numbers for which the digital sum contains the same distinct digits as the digital product.
%C A249334 Numbers k such that A007953(k) contains the same distinct digits as A007954(k). (But either of the two may contain some digit(s) more than once.)
%C A249334 Supersequence of A034710 (positive numbers for which the sum of digits is equal to the product of digits).
%C A249334 Union of A034710 and A249335.
%C A249334 The sequence is infinite since, e.g., A002275(n) = (10^n-1)/9 is in the sequence for all n = A002275(k), k>=0; and more generally N(k,d) = A002275(n)-1+d with n = (A002275(k)-1)*d+1, k>0 and 0<d<10 (with n digits which sum to n-1+d = (10^k-1)/9*d). - _M. F. Hasler_, Oct 29 2014
%H A249334 Chai Wah Wu, <a href="/A249334/b249334.txt">Table of n, a(n) for n = 1..10000</a> (n = 1..201 from Jaroslav Krizek).
%e A249334 1137 is a term because 1+1+3+7 = 12 and 1*1*3*7 = 21.
%e A249334 3344 is a term because 3+3+4+4=14 has the same (distinct) digits as 3*3*4*4=144.
%t A249334 Select[Range[0,12000],Union[IntegerDigits[Total[IntegerDigits[#]]]]==Union[IntegerDigits[Times@@IntegerDigits[#]]]&] (* _Harvey P. Dale_, Aug 17 2025 *)
%o A249334 (Magma) [0] cat [n: n in [1..10^6] | Set(Intseq(&*Intseq(n))) eq Set(Intseq(&+Intseq(n)))];
%o A249334 (PARI) is_A249334(n)=Set(digits(sumdigits(n)))==Set(digits(prod(i=1,#n=digits(n),n[i]))) \\ _M. F. Hasler_, Oct 29 2014
%Y A249334 Cf. A034710, A007953, A007954, A249335.
%Y A249334 Cf. A061672.
%K A249334 nonn,base,changed
%O A249334 1,3
%A A249334 _Jaroslav Krizek_, Oct 25 2014