cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249351 Triangle read by rows in which row n lists the widths of the symmetric representation of sigma(n).

This page as a plain text file.
%I A249351 #81 Aug 02 2023 14:33:32
%S A249351 1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1,1,1,1,2,1,1,1,
%T A249351 1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%U A249351 1,0,0,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1
%N A249351 Triangle read by rows in which row n lists the widths of the symmetric representation of sigma(n).
%C A249351 Here T(n,k) is defined to be the "k-th width" of the symmetric representation of sigma(n), with n>=1 and 1<=k<=2n-1. Explanation: consider the diagram of the symmetric representation of sigma(n) described in A236104, A237593 and other related sequences. Imagine that the diagram for sigma(n) contains 2n-1 equidistant segments which are parallel to the main diagonal [(0,0),(n,n)] of the quadrant. The segments are located on the diagonal of the cells. The distance between two parallel segment is equal to sqrt(2)/2. T(n,k) is the length of the k-th segment divided by sqrt(2). Note that the triangle contains nonnegative terms because for some n the value of some widths is equal to zero. For an illustration of some widths see _Hartmut F. W. Hoft_'s contribution in the Links section of A237270.
%C A249351 Row n has length 2*n-1.
%C A249351 Row sums give A000203.
%C A249351 If n is a power of 2 then all terms of row n are 1's.
%C A249351 If n is an even perfect number then all terms of row n are 1's except the middle term which is 2.
%C A249351 If n is an odd prime then row n lists (n+1)/2 1's, n-2 zeros, (n+1)/2 1's.
%C A249351 The number of blocks of positive terms in row n gives A237271(n).
%C A249351 The sum of the k-th block of positive terms in row n gives A237270(n,k).
%C A249351 It appears that the middle diagonal is also A067742 (which was conjectured by _Michel Marcus_ in the entry A237593 and checked with two Mathematica functions up to n = 100000 by _Hartmut F. W. Hoft_).
%C A249351 It appears that the trapezoidal numbers (A165513) are also the numbers k > 1 with the property that some of the noncentral widths of the symmetric representation of sigma(k) are not equal to 1. - _Omar E. Pol_, Mar 04 2023
%H A249351 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%e A249351 Triangle begins:
%e A249351   1;
%e A249351   1,1,1;
%e A249351   1,1,0,1,1;
%e A249351   1,1,1,1,1,1,1;
%e A249351   1,1,1,0,0,0,1,1,1;
%e A249351   1,1,1,1,1,2,1,1,1,1,1;
%e A249351   1,1,1,1,0,0,0,0,0,1,1,1,1;
%e A249351   1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
%e A249351   1,1,1,1,1,0,0,1,1,1,0,0,1,1,1,1,1;
%e A249351   1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1;
%e A249351   1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1;
%e A249351   1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1;
%e A249351   ...
%e A249351 ---------------------------------------------------------------------------
%e A249351 .        Written as an isosceles triangle              Diagram of
%e A249351 .              the sequence begins:               the symmetry of sigma
%e A249351 ---------------------------------------------------------------------------
%e A249351 .                                                _ _ _ _ _ _ _ _ _ _ _ _
%e A249351 .                      1;                       |_| | | | | | | | | | | |
%e A249351 .                    1,1,1;                     |_ _|_| | | | | | | | | |
%e A249351 .                  1,1,0,1,1;                   |_ _|  _|_| | | | | | | |
%e A249351 .                1,1,1,1,1,1,1;                 |_ _ _|    _|_| | | | | |
%e A249351 .              1,1,1,0,0,0,1,1,1;               |_ _ _|  _|  _ _|_| | | |
%e A249351 .            1,1,1,1,1,2,1,1,1,1,1;             |_ _ _ _|  _| |  _ _|_| |
%e A249351 .          1,1,1,1,0,0,0,0,0,1,1,1,1;           |_ _ _ _| |_ _|_|    _ _|
%e A249351 .        1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;         |_ _ _ _ _|  _|     |
%e A249351 .      1,1,1,1,1,0,0,1,1,1,0,0,1,1,1,1,1;       |_ _ _ _ _| |      _|
%e A249351 .    1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1;     |_ _ _ _ _ _|  _ _|
%e A249351 .  1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1;   |_ _ _ _ _ _| |
%e A249351 .1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1; |_ _ _ _ _ _ _|
%e A249351 ...
%e A249351 From _Omar E. Pol_, Nov 22 2020: (Start)
%e A249351 Also consider the infinite double-staircases diagram defined in A335616.
%e A249351 For n = 15 the diagram with first 15 levels looks like this:
%e A249351 .
%e A249351 Level                         "Double-staircases" diagram
%e A249351 .                                          _
%e A249351 1                                        _|1|_
%e A249351 2                                      _|1 _ 1|_
%e A249351 3                                    _|1  |1|  1|_
%e A249351 4                                  _|1   _| |_   1|_
%e A249351 5                                _|1    |1 _ 1|    1|_
%e A249351 6                              _|1     _| |1| |_     1|_
%e A249351 7                            _|1      |1  | |  1|      1|_
%e A249351 8                          _|1       _|  _| |_  |_       1|_
%e A249351 9                        _|1        |1  |1 _ 1|  1|        1|_
%e A249351 10                     _|1         _|   | |1| |   |_         1|_
%e A249351 11                   _|1          |1   _| | | |_   1|          1|_
%e A249351 12                 _|1           _|   |1  | |  1|   |_           1|_
%e A249351 13               _|1            |1    |  _| |_  |    1|            1|_
%e A249351 14             _|1             _|    _| |1 _ 1| |_    |_             1|_
%e A249351 15            |1              |1    |1  | |1| |  1|    1|              1|
%e A249351 .
%e A249351 Starting from A196020 and after the algorithm described in A280850 and A296508 applied to the above diagram we have a new diagram as shown below:
%e A249351 .
%e A249351 Level                             "Ziggurat" diagram
%e A249351 .                                          _
%e A249351 6                                         |1|
%e A249351 7                            _            | |            _
%e A249351 8                          _|1|          _| |_          |1|_
%e A249351 9                        _|1  |         |1   1|         |  1|_
%e A249351 10                     _|1    |         |     |         |    1|_
%e A249351 11                   _|1      |        _|     |_        |      1|_
%e A249351 12                 _|1        |       |1       1|       |        1|_
%e A249351 13               _|1          |       |         |       |          1|_
%e A249351 14             _|1            |      _|    _    |_      |            1|_
%e A249351 15            |1              |     |1    |1|    1|     |              1|
%e A249351 .
%e A249351 The 15th row
%e A249351 of this seq:  [1,1,1,1,1,1,1,1,0,0,0,1,1,1,2,1,1,1,0,0,0,1,1,1,1,1,1,1,1]
%e A249351 The 15th row
%e A249351 of A237270:   [              8,            8,            8              ]
%e A249351 The 15th row
%e A249351 of A296508:   [              8,      7,    1,    0,      8              ]
%e A249351 The 15th row
%e A249351 of A280851    [              8,      7,    1,            8              ]
%e A249351 .
%e A249351 The number of horizontal steps (or 1's) in the successive columns of the above diagram gives the 15th row of this triangle.
%e A249351 For more information about the parts of the symmetric representation of sigma(n) see A237270. For more information about the subparts see A239387, A296508, A280851.
%e A249351 More generally, it appears there is the same correspondence between the original diagram of the symmetric representation of sigma(n) and the "Ziggurat" diagram of n. (End)
%t A249351 (* function segments are defined in A237270 *)
%t A249351 a249351[n_] := Flatten[Map[segments, Range[n]]]
%t A249351 a249351[10] (* _Hartmut F. W. Hoft_, Jul 20 2022 *)
%Y A249351 Cf. A000203, A003056, A067742, A071562, A165513, A196020, A235791, A236104, A237048, A237270, A237271, A237591, A237593, A238443, A239660, A239932-A239934, A240542, A241008, A241010, A245092, A245685, A246955, A246956, A247687, A249223, A250068, A250070, A250071, A262626, A280850, A280851, A296508, A235616, A347186.
%K A249351 nonn,tabf
%O A249351 1,31
%A A249351 _Omar E. Pol_, Oct 26 2014