This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249352 #11 Oct 26 2014 17:29:54 %S A249352 0,7,2439,2439111,5358727111,21949346247111,150550565908935111, %T A249352 1603062425798341063111,25047850403099079111111111, %U A249352 549850412048830984647111111111,16380593625346723863622087111111111 %N A249352 (A007559(n+1)^2-1)/9, where A007559(n) = 1*4*7*...*(3n-2). %C A249352 These are the numerators of the partial sums S(n) = Sum_{k=1..n} (3k^3+3k^2+k)/A007559(k+1)^2 before simplification, i.e., a(n) = S(n)*A007559(n+1)^2. The series S(n) has sum 1/9, actually S(n) = 1/9 - 1/(9*A007559(n+1)^2). %H A249352 B. Sahu in reply to S. Klein, <a href="http://lnkd.in/bKzkYcS">A neat infinite sum ...</a>, Number Theory group on LinkedIn, Oct. 2014. %o A249352 (PARI) a(n)=(prod(k=1,n,3*k+1)^3-1)/9 %K A249352 nonn %O A249352 0,2 %A A249352 _M. F. Hasler_, Oct 26 2014