cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249368 Rectangular array by antidiagonals: t(n,k) is the position of prime(n)*k^2 when the numbers prime(j)*h^2 are jointly ordered, for j >=1 and h >= 1.

This page as a plain text file.
%I A249368 #6 Nov 09 2014 00:12:34
%S A249368 1,5,2,10,7,3,18,14,12,4,26,25,23,15,6,35,37,40,31,22,8,45,50,57,52,
%T A249368 46,27,9,59,63,79,76,77,55,33,11,69,83,102,104,112,89,67,38,13,87,100,
%U A249368 128,135,152,129,111,73,43,16,99,121,156,170,197,179,162,122
%N A249368 Rectangular array by antidiagonals:  t(n,k) is the position of prime(n)*k^2 when the numbers prime(j)*h^2 are jointly ordered, for j >=1 and h >= 1.
%C A249368 Equivalently, let S be the set of positive integer multiples of the square roots of the primes.  Then t(n,k) is the position of k*sqrt(prime(n)) in the ordered union of S.
%C A249368 Every positive integer occurs exactly once in the array {t(n,k)}.
%e A249368 Northwest corner:
%e A249368 1   5    10   18   26    35    45
%e A249368 2   7    14   25   37    50    63
%e A249368 3   12   23   40   57    79    102
%e A249368 4   15   31   52   76    104   135
%e A249368 6   22   46   77   112   152   197
%e A249368 The numbers prime(1)*k^2 are (2,8,18,32,50,...);
%e A249368 the numbers prime(2)*k^2 are (3,12,27,48,75,...);
%e A249368 the numbers prime(3)*k^2 are (5,20,45,80,125,...);
%e A249368 the joint ranking of all such numbers is (2,3,5,7,8,...) = A229125, in which numbers of the form 2*k^2 occupy positions 1,5,10,17,... which is row 1 of the present array.  Similarly, the numbers 3*k^2 occupy positions 2,7,14,20,...
%t A249368 z = 20000; e[h_] := e[h] = Select[Range[2000], Prime[h]*(#^2) < z &];
%t A249368 t = Table[Prime[n]*e[n]^2, {n, 1, 2000}]; s = Sort[Flatten[t]];
%t A249368 u[n_, k_] := Position[s, Prime[n]*k^2];
%t A249368 TableForm[Table[u[n, k], {n, 1, 15}, {k, 1, 15}]]   (* A249368 array *)
%t A249368 Table[u[k, n - k + 1], {n, 15}, {k, 1, n}] // Flatten  (* A249368 sequence *)
%Y A249368 Cf. A229125, A249369, A249370, A000040.
%K A249368 nonn,tabl,easy
%O A249368 1,2
%A A249368 _Clark Kimberling_, Oct 26 2014