This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A249369 #9 Nov 04 2014 11:13:33 %S A249369 1,5,2,11,9,3,21,19,12,4,31,34,26,18,6,43,50,45,39,22,7,55,70,67,68, %T A249369 48,28,8,74,91,93,101,79,59,32,10,89,116,122,138,117,100,64,37,13,109, %U A249369 142,156,181,164,148,110,78,47,14,128,172,189,233,211,205,165 %N A249369 Rectangular array by descending antidiagonals: t(n,k) is the position of prime(n+1)*k^2 when the numbers prime(j+1)*h^2 are jointly ordered, for j>=1 and h>=1. %C A249369 Equivalently, let S be the set of positive integer multiples of the square roots of the odd primes. Then t(n,k) is the position of k*sqrt(prime(n+1)) in the ordered union of S. %C A249369 Every positive integer occurs exactly once in the array {t(n,k)}. %e A249369 Northwest corner: %e A249369 1 5 11 21 31 43 55 %e A249369 2 9 19 34 50 70 91 %e A249369 3 12 26 45 67 93 122 %e A249369 4 18 39 68 101 138 181 %e A249369 6 22 48 79 117 164 211 %e A249369 The numbers 3*k^2 are (3,12,27,48,75,...); %e A249369 the numbers 5*k^2 are (5,20,45,80,125,...); %e A249369 the numbers 7*k^2 are (7,28,63,112,175,...); %e A249369 the joint ranking of all such numbers is (3,5,7,11,12,13,...) = A249370, %e A249369 in which numbers of the form 3*k^2 occupy positions 1,5,11,21,... which is row 1 of the present array. Similarly, the numbers 5*k^2 occupy positions 2,9,19,34,... %t A249369 z = 20000; e[h_] := e[h] = Select[Range[2000], Prime[h]*(#^2) < z &]; %t A249369 t = Table[Prime[n]*e[n]^2, {n, 2, 2000}]; s = Sort[Flatten[t]]; %t A249369 u[n_, k_] := Position[s, Prime[n]*k^2]; %t A249369 TableForm[Table[u[n, k], {n, 2, 15}, {k, 1, 15}]] (* A249369 array *) %t A249369 Table[u[k, n - k + 1], {n, 15}, {k, 1, n}] // Flatten (* A249369 sequence *) %Y A249369 Cf. A249368, A249370. %K A249369 nonn,tabl,easy %O A249369 1,2 %A A249369 _Clark Kimberling_, Oct 26 2014