A249370 Numbers p*m^2, where p is an odd prime and m >= 1, arranged in increasing order.
3, 5, 7, 11, 12, 13, 17, 19, 20, 23, 27, 28, 29, 31, 37, 41, 43, 44, 45, 47, 48, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 80, 83, 89, 92, 97, 99, 101, 103, 107, 108, 109, 112, 113, 116, 117, 124, 125, 127, 131, 137, 139, 147, 148, 149, 151, 153, 157
Offset: 1
Programs
-
Maple
N:= 1000: # to get all terms <= N {seq(seq(p*m^2, m = 1 .. floor(sqrt(N/p))), p = select(isprime,[2*i+1 $ i = 1..floor((N-1)/2)]))}; # if using Maple 11 or previous, uncomment the next line # sort(convert(%,list)); # Robert Israel, Oct 30 2014
-
Mathematica
Take[Sort[Flatten[Table[Prime[n]*m^2, {n, 2, 1000}, {m, 1, 100}]]], 100]
-
Python
from math import isqrt from sympy import primepi def A249370(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x+(m:=isqrt(x))-sum(((k:=x//y**2)<2)+primepi(k) for y in range(1,m+1)) return bisection(f,n,n) # Chai Wah Wu, Jan 30 2025