cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249386 Decimal expansion of the constant 'a' appearing in the asymptotic expression of the number of plane partitions of n as a*n^(-25/36)*exp(b*n^(2/3)).

This page as a plain text file.
%I A249386 #35 Feb 28 2025 05:54:58
%S A249386 2,3,1,5,1,6,8,1,3,4,4,8,8,9,8,3,7,0,5,6,0,3,5,6,4,0,6,4,0,6,3,3,2,1,
%T A249386 1,0,8,5,5,1,2,9,2,1,2,5,9,3,2,8,7,9,2,6,5,9,7,9,4,4,5,2,4,1,7,6,7,3,
%U A249386 9,6,6,5,4,3,9,4,4,2,0,2,2,7,4,5,1,2,7,5,3,1,9,7,2,3,2,5,3,0,3,0,2,3,6,6
%N A249386 Decimal expansion of the constant 'a' appearing in the asymptotic expression of the number of plane partitions of n as a*n^(-25/36)*exp(b*n^(2/3)).
%C A249386 The paper by Finch contains an error: the denominator should be sqrt(3*Pi), not sqrt(Pi). The constant 0.4009988836 is wrong. The formula in A000219 and the article by L. Mutafchiev and E. Kamenov (page 6) is correct. - _Vaclav Kotesovec_, Oct 27 2014. [In new version of prt.pdf is already corrected. - _Vaclav Kotesovec_, May 11 2015]
%H A249386 G. C. Greubel, <a href="/A249386/b249386.txt">Table of n, a(n) for n = 0..5000</a>
%H A249386 Steven Finch, <a href="/A000219/a000219_1.pdf">Integer Partitions</a>, September 22, 2004. [Cached copy, with permission of the author]
%H A249386 L. Mutafchiev and E. Kamenov, <a href="https://arxiv.org/abs/math/0601253">On The Asymptotic Formula for the Number of Plane Partitions of Positive Integers</a>, arXiv:math/0601253 [math.CO], 2006; C. R. Acad. Bulgare Sci. 59(2006), No. 4, 361-366.
%F A249386 Equals zeta(3)^(7/36)*exp(zeta'(-1))/(2^(11/36)*sqrt(3*Pi)).
%F A249386 Equals exp(1/12) * A002117^(7/36) / (A074962 * 2^(11/36) * sqrt(3*Pi)). - _Vaclav Kotesovec_, Mar 02 2015
%e A249386 0.231516813448898370560356406406332110855129212593287926597944524...
%t A249386 a = Zeta[3]^(7/36)*Exp[Zeta'[-1]]/(2^(11/36)*Sqrt[3*Pi]); RealDigits[a, 10, 104] // First
%Y A249386 Cf. A000219, A020805, A084448, A239049.
%K A249386 nonn,cons,easy
%O A249386 0,1
%A A249386 _Jean-François Alcover_, Oct 27 2014